标题:Total colorings of planar graphs without chordal 6-cycles
作者:Wang, Bing; Wu, Jian-Liang; Wang, Hui-Juan
作者机构:[Wang, Bing] Zaozhuang Univ, Dept Math, Shandong 277160, Peoples R China.; [Wang, Bing; Wu, Jian-Liang; Wang, Hui-Juan] Shandong Univ, Sch Math, Jin 更多
通讯作者:Wu, JL
通讯作者地址:[Wu, JL]Shandong Univ, Sch Math, Jinan 250100, Peoples R China.
来源:DISCRETE APPLIED MATHEMATICS
出版年:2014
卷:171
页码:116-121
DOI:10.1016/j.dam.2014.02.004
关键词:Total coloring; Planar graph; Cycle; Chords
摘要:A total k-coloring of a graph G is a coloring of V (G) boolean OR E(G) using k colors such that no two adjacent or incident elements receive the same color. The total chromatic number of G is the smallest integer k such that G has a total k-coloring. In this paper, it is proved that if G is a planar graph with maximum degree Delta >= 7 and without chordal 6-cycles, then the total chromatic number of G is Delta + 1. (C) 2014 Elsevier B.V. All rights reserved.
收录类别:EI;SCOPUS;SCIE
WOS核心被引频次:3
Scopus被引频次:4
资源类型:期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-84898541454&doi=10.1016%2fj.dam.2014.02.004&partnerID=40&md5=bb7d9f25ce33f7bca588a387fb84e8b7
TOP