标题:Quasi-Periodic Relativistic Strings in the Minkowski Space R1 + n
作者:Yan W.; Zhang B.
作者机构:[Yan, W] School of Mathematical Sciences, Xiamen University, Xiamen, 361005, China;[ Zhang, B] College of Mathematics and System Science, Shandong Uni 更多
通讯作者:Zhang, B(zhangbinlin2012@163.com)
通讯作者地址:[Zhang, B] College of Mathematics and System Science, Shandong University of Science and TechnologyChina;
来源:Journal of Geometric Analysis
出版年:2020
DOI:10.1007/s12220-019-00336-7
关键词:Hyperbolic equations; Nash–Moser iteration; Quasi-periodic solution
摘要:In this article, we consider the motion of relativistic strings in the Minkowski space R1 + n. Those surfaces are known as a timelike minimal surface, and described by a system with n nonlinear wave equations of Born-Infeld type. The one dimensional Born-Infeld equation xtt(1+xθ2)-xθθ(1-xt2)=2xtxθxtθadmits an exact time quasi-periodic solution x(t, θ) = sin ((ω· l) t+ θ) - sin ((ω· l) t- θ) , where ω∈ Rn denotes the frequencies, and l∈ Zn. By constructing a suitable Nash–Moser iteration scheme, we prove that relativistic strings can admit a more generalized time quasi-periodic motion in R1 + n. Moreover, those time quasi-periodic solutions are also timelike solutions. © 2020, Mathematica Josephina, Inc.
收录类别:SCOPUS
资源类型:期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077638835&doi=10.1007%2fs12220-019-00336-7&partnerID=40&md5=54bca06016e0584866a03b3505337ded
TOP