标题:General Preparation of Three-Dimensional Porous Metal Oxide Foams Coated with Nitrogen-Doped Carbon for Enhanced Lithium Storage
作者:Lu, Ke; Xu, Jiantie; Zhang, Jintao; Song, Bin; Ma, Houyi
作者机构:[Lu, Ke; Zhang, Jintao; Ma, Houyi] Shandong Univ, Sch Chem & Chem Engn, Key Lab Colloid & Interface Chem, State Educ Minist, Jinan 250100, Peoples R C 更多
通讯作者:Zhang, Jintao
通讯作者地址:[Zhang, JT; Ma, HY]Shandong Univ, Sch Chem & Chem Engn, Key Lab Colloid & Interface Chem, State Educ Minist, Jinan 250100, Peoples R China.
来源:ACS APPLIED MATERIALS & INTERFACES
出版年:2016
卷:8
期:27
页码:17402-17408
DOI:10.1021/acsami.6b04587
关键词:porous structure; metal oxide foam; nitrogen-doped carbon; lithium; storage; surfactant
摘要:Porous metal oxide architectures coated with a thin layer of carbon are attractive materials for energy storage applications. Here, a series of porous metal oxide (e.g., vanadium oxides, molybdenum oxides, manganese oxides) foams with/ without nitrogen-doped carbon (N-C) coating have been synthesized via a general surfactant -assisted template method, involving the formation of porous metal oxides coated with 1-hexadecylamine (HDA) and a subsequent thermal treatment. The presence of HDA is of importance for the formation of a porous structure, and the successive pyrolysis of such a nitrogen-containing surfactant generates nitrogen doped carbon (N C) coated on the surface of metal oxides, which also provides a facile way to adjust the valence states of metal oxides via the carbothermal reduction reaction. When used as electrode materials, the highly porous metal oxides with N C coating exhibited enhanced performance for lithium ion storage, thanks to the unique 3D structures associated with highly porous structure and thin N C coating. Typically, the porous metal oxides (V2O5, MoO3, MnO2) exhibited discharge capacities of 286, 303, and 463 mAh g(-1) at current densities of 30 and 100 mA g(-1), respectively. In contrast, the metal oxides with low valences and carbon coating (VO2@N C, MoO2@N C, and MnO@N C) exhibited improved capacities of 461, 613, and 892 mAh g 1.The capacity retentions of about 87.5, 80.2, and 85.0% for VO2@N C, MoO2@N C, and MnO@N C were achieved after 600 cycles, suggesting the acceptable cycling stability. The present strategy would provide general guidance for preparing porous metal oxide foams with enhanced lithium storage performances.
收录类别:EI;SCOPUS;SCIE
WOS核心被引频次:18
Scopus被引频次:17
资源类型:期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-84978372423&doi=10.1021%2facsami.6b04587&partnerID=40&md5=6addb8e700c85f6017ca45b562ba14ef
TOP