标题:Silica microsphere templated self-assembly of a three-dimensional carbon network with stable radio-frequency negative permittivity and low dielectric loss
作者:Xie, Peitao; Wang, Zhongyang; Zhang, Zidong; Fan, Runhua; Cheng, Chuanbing; Liu, Hu; Liu, Yao; Li, Tingxi; Yan, Chao; Wang, Ning; 更多
作者机构:[Xie, Peitao; Wang, Zhongyang; Zhang, Zidong; Cheng, Chuanbing; Liu, Yao] Shandong Univ, Minist Educ, Key Lab Liquid Solid Struct Evolut & Proc Mat, J 更多
通讯作者:Wang, Zhongyang
通讯作者地址:[Zhang, ZD]Shandong Univ, Minist Educ, Key Lab Liquid Solid Struct Evolut & Proc Mat, Jinan 250061, Shandong, Peoples R China;[Fan, RH]Shanghai Mariti 更多
来源:JOURNAL OF MATERIALS CHEMISTRY C
出版年:2018
卷:6
期:19
页码:5239-5249
DOI:10.1039/c7tc05911f
摘要:Percolative composites always suffer from their unstable and filler-loading dependent microstructures and negative electromagnetic parameters. Here, stable negative permittivity is achieved by in situ constructing a three-dimensional carbon network in the silica spherical matrix after a self-assembly and pyrolysis process. An electrical percolation phenomenon appears with the formation of a carbon network. Once the carbon network is formed, further increasing carbon loadings will only influence the porosity rather than the connectivity due to the nature of the porous carbon itself. Hence, the microstructure and plasma-like negative permittivity are not sensitive to carbon loading, leading to a negligible carbon loading dependent permittivity behavior. Moreover, negative permittivity with small values (-100 < epsilon < 0), beneficial for matching with permeability, was effectively adjusted by changing the carbonization temperature. The carbon composites with negative permittivity showed an extremely low dielectric loss (tan = 1-7) compared with metal composites (usually tan = 10-100). This work provides a convenient means to obtain stable negative permittivity properties. The carbon composites can be regarded as a promising candidate for metamaterials and will facilitate the applications of materials with negative electromagnetic parameters.
收录类别:EI;SCOPUS;SCIE
WOS核心被引频次:5
Scopus被引频次:10
资源类型:期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047266890&doi=10.1039%2fc7tc05911f&partnerID=40&md5=c23023cded5702302e1bf32aa10c7fab
TOP