标题:Suppressing Photoinduced Charge Recombination via the Lorentz Force in a Photocatalytic System
作者:Gao, Wenqiang; Lu, Jibao; Zhang, Shan; Zhang, Xiaofei; Wang, Zhongxuan; Qin, Wei; Wang, Jianjun; Zhou, Weijia; Liu, Hong; Sang, Yuan 更多
作者机构:[Gao, Wenqiang; Zhang, Shan; Zhang, Xiaofei; Wang, Zhongxuan; Qin, Wei; Wang, Jianjun; Liu, Hong; Sang, Yuanhua] Shandong Univ, State Key Lab Crystal 更多
通讯作者:Liu, H;Sang, YH;Zhou, WJ;Liu, H
通讯作者地址:[Liu, H; Sang, YH]Shandong Univ, State Key Lab Crystal Mat, Jinan 250100, Shandong, Peoples R China;[Zhou, WJ; Liu, H]Jinan Univ, Inst Adv Interdiscip 更多
来源:ADVANCED SCIENCE
DOI:10.1002/advs.201901244
关键词:charge separation; Lorentz force; photocatalysis
摘要:Suppressing the recombination of photogenerated charges is one of the most important routes for enhancing the catalytic performance of semiconductor photocatalysts. In addition to the built-in field produced by semiconductor heterostructures and the photo-electrocatalysis realized by applying an external electrical potential to photocatalysts assembled on electrodes, other strategies are waiting to be scientifically explored and understood. In this work, a Lorentz force-assisted charge carrier separation enhancement strategy is reported to improve the photocatalytic efficiency by applying a magnetic field to a photocatalytic system. The photocatalytic efficiency can be improved by 26% just by placing a permanent magnet beneath the normal photocatalytic system without any additional power supply. The mechanism by which the Lorentz force acts oppositely on the photogenerated electrons and holes is introduced, resulting in the suppression of the photoinduced charge recombination. This work provides insights into the specific role of the Lorentz force in suppressing the recombination of electron-hole pairs in their initial photogenerated states. This suppression would increase the population of charge carriers that would subsequently be transported in the semiconductor. It is believed that this strategy based on magnetic effects will initiate a new way of thinking about photoinduced charge separation.
收录类别:SCIE
资源类型:期刊论文
TOP