标题:Probabilistic Short-Term Wind Power Forecast Using Componential Sparse Bayesian Learning
作者:Yang, M.;Fan, S.;Lee, W.-J.
作者机构:[Yang, M] Key Laboratory of Power System Intelligent Dispatch and Control of the Ministry of Education, Shandong University, Jinan 250061, China;[ Fan 更多
会议名称:48th IEEE/IAS Industrial and Commercial Power Systems Technical Conference
会议日期:MAY 20-24, 2012
来源:IEEE Transactions on Industry Applications
出版年:2013
卷:49
期:6
页码:2783-2792
DOI:10.1109/TIA.2013.2265292
关键词:Discrete wavelet transform (DWT);probabilistic forecast;sparse Bayesian learning (SBL);wind generation forecast
摘要:A practical approach for the probabilistic short-term generation forecast of a wind farm is proposed in this paper. Compared with deterministic wind generation forecast, probabilistic wind generation forecast can provide important wind generation distribution information for operation, trading, and some other applications. The proposed approach is based on a sparse Bayesian learning (SBL) algorithm, which produces probabilistic forecast results by estimating the probabilistic density of the weights of Gaussian kernel functions. Furthermore, since the wind generation time series exhibits strong nonstationary property, a componential forecast strategy is used to improve the forecast accuracy. According to the strategy, the wind generation series is decomposed into several more predictable series by discrete wavelet transform, and then, the resulted series are forecasted using the SBL algorithm. To fulfill multilook-ahead wind generation forecast, a multi-SBL forecast model is constructed in the context. Tests on a 74-MW wind farm located in southwest Oklahoma demonstrate the effectiveness of the proposed approach.
收录类别:CPCI-S;EI;SCOPUS;SCIE
WOS核心被引频次:23
Scopus被引频次:30
资源类型:会议论文;期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-84890074971&doi=10.1109%2fTIA.2013.2265292&partnerID=40&md5=b227560405708cf4e7e7dec2e3a9ad2c
TOP