标题:Enhanced photocatalysis for water splitting in layered tin chalcogenides with high carrier mobility
作者:Li, Xiaoteng; Zuo, Xi; Jiang, Xinxin; Li, Dongmei; Cui, Bin; Liu, Desheng
作者机构:[Li, Xiaoteng; Zuo, Xi; Jiang, Xinxin; Li, Dongmei; Cui, Bin; Liu, Desheng] Shandong Univ, Sch Phys, State Key Lab Crystal Mat, Jinan 250100, Shandong 更多
通讯作者:Cui, B;Liu, DS;Liu, DS
通讯作者地址:[Cui, B; Liu, DS]Shandong Univ, Sch Phys, State Key Lab Crystal Mat, Jinan 250100, Shandong, Peoples R China;[Liu, DS]Jining Univ, Dept Phys, Qufu 273 更多
来源:PHYSICAL CHEMISTRY CHEMICAL PHYSICS
出版年:2019
卷:21
期:14
页码:7559-7566
DOI:10.1039/c9cp00088g
摘要:Due to their proper band gaps (between 1.40 eV and 2.34 eV), newly fabricated tin monochalcogenides (SnX, X = S, Se) and dichalcogenides SnX2, whose monolayer formation energies are much smaller than MoS2, are promising materials for harvesting visible light. Moreover, the anisotropic carrier mobility is up to 2486.93 cm(2) V-1 s(-1) for SnSe and 2181.96 cm(2) V-1 s(-1) for SnS2. By applying low tensile strain, the band edge of SnX can be lowered to meet the criteria for water splitting. Meanwhile, the photo-generated exciton binding energies are pretty low, which indicates that the electron-hole can separate efficiently, and may lead to remarkable activity for photocatalysis. Promisingly, it is possible to stack SnS and SnS2 to fabricate a vertical heterostructure (VHT). According to band analysis, we found that the global valence and conduction bands are from SnX and SnX2, respectively. Due to the weak interaction between the two monolayers, the optical gaps can slightly decrease in the two monolayers compared to those in the corresponding isolated ones. Therefore, the VHT can meet the two primary conditions of a photocatalyst for water splitting to generate H-2 in SnX and O-2 in SnX2. The strong electronegativity difference between the two layers develops an effective potential gradient between the SnS and SnS2 layers, which evokes an effective electric field between them. Thus, it is of benefit for quick charge separation and inter-layer charge transfer. High efficiency of light harvesting can be realized, and improved photocatalytic efficiency.
收录类别:SCOPUS;SCIE
资源类型:期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063998335&doi=10.1039%2fc9cp00088g&partnerID=40&md5=51101e13f0e1fd0f4323494e29d89c5a
TOP