标题:Parking Data Collection, Storage and Mining in Smart City
作者:Zhao, Ziliang; Kim, Jong-won; Zhang, Liang
通讯作者:Zhao, ZL
作者机构:[Zhao, Ziliang; Zhang, Liang] Shandong Univ, Sch Mech Elect & Informat Engn, Weihai, Peoples R China.; [Kim, Jong-won] Korea Univ Technol & Educ, Sc 更多
会议名称:2nd International Conference on Big Data Research (ICBDR)
会议日期:OCT 27-29, 2018
来源:PROCEEDINGS OF THE 2018 2ND INTERNATIONAL CONFERENCE ON BIG DATA RESEARCH (ICBDR 2018)
出版年:2018
页码:95-99
DOI:10.1145/3291801.3291841
关键词:Big Data; IoT; traffic model; parking model; cloud storage; parking; prediction; Smart City; ZigBee
摘要:With the continuous and fast development of urbanization, traffic congestion has become a major problem in cities. However, new technologies provide us opportunity to tackle the problem in an efficient way. As people know, intelligent traffic is an important part of a Smart City. Besides, intelligent parking is an essential part of Intelligent Transportation. Internet of Things (IoT) provides to everyone new types of services in order to improve everyday life. As a result, an increasing number of parking management and data acquisition systems were developed by IoT technology. This paper aims to introduce a new system through which data acquisition and storage of parking information could fully automatically take part. To analyzing parking information, in this paper, a new traffic model is proposed to forecast the status of urban traffic in order to improve the efficiency of urban transportation. This system is expected to benefit drivers and the government and to improve urban environment simultaneously.
收录类别:CPCI-S
资源类型:会议论文
TOP