标题:On maximum signless Laplacian Estrada indices of k-trees
作者:Ning, Wenjie; Wang, Kun
作者机构:[Ning, Wenjie] China Univ Petr East China, Coll Sci, Qingdao 266580, Shandong, Peoples R China.; [Wang, Kun] Shandong Univ Sci & Technol, Coll Math 更多
通讯作者:Wang, K
通讯作者地址:[Wang, K]Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Shandong, Peoples R China.
来源:DISCRETE MATHEMATICS
出版年:2020
卷:343
期:2
DOI:10.1016/j.disc.2019.111666
关键词:Estrada index; Signless Laplacian Estrada index; Semi-edge walk;; k-trees; Simplicial vertex
摘要:The signless Laplacian Estrada index of a graph G is defined as SLEE(G) = Sigma(n)(i=i) e(qi), where q(1), q(2), ... q(n) are the eigenvalues of the signless Laplacian matrix of G. A k-tree is either a complete graph on k vertices or a graph obtained from a smaller k-tree by adjoining a new vertex together with k edges connecting it to a k-clique. Denote by T-n(k) the set of all k-trees of order n. In this paper, we characterize the graphs among T-n(k) with the first (resp. the second) largest SLEE. (C) 2019 Elsevier B.V. All rights reserved.
收录类别:SCOPUS;SCIE
资源类型:期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072532963&doi=10.1016%2fj.disc.2019.111666&partnerID=40&md5=709afecfcc12a8d3cc65e000d5e43947
TOP