标题:Structural regulation of ZnGa2O4 nanocubes for achieving high capacity and stable rate capability as an anode material of lithium ion batteries
作者:Han, Nao; Chen, Dairong; Pang, Yingping; Han, Zhiming; Xia, Yuguo; Jiao, Xiuling
作者机构:[Han, Nao; Chen, Dairong; Pang, Yingping; Han, Zhiming; Xia, Yuguo; Jiao, Xiuling] Shandong Univ, Sch Chem & Chem Engn, Natl Engn Res Ctr Colloidal Ma 更多
通讯作者:Xia, YG;Jiao, XL
通讯作者地址:[Xia, YG; Jiao, XL]Shandong Univ, Sch Chem & Chem Engn, Natl Engn Res Ctr Colloidal Mat, Jinan 250100, Peoples R China.
来源:ELECTROCHIMICA ACTA
出版年:2017
卷:235
页码:295-303
DOI:10.1016/j.electacta.2017.03.122
关键词:Li rechargeable batteries; Structural regulation; Spinel metal-oxide;; ZnGa2O4 nanocubes; Anode material
摘要:Increasing demand for high energy capability Li rechargeable batteries has promoted extensive research on the development of electrode materials. Multi-component spinel metal-oxide is considered to be promising anode material owing to their better electrical conductivity and higher electrochemical activity. Herein, a facile one-pot strategy without further thermal annealing treatment is successfully developed for preparation of well-defined ZnGa2O4 nanocubes. To the best of our knowledge, this is the first report on the synthesis of ZnGa2O4 nanocubes through wet chemical method and applied as anode material. Galvanostatic charge and discharge results indicate ZnGa2O4 nanocubes electrode is capable of delivering a higher capacity and better cycling stability than ZnO/Ga2O3 mixture electrode. Noteworthily, ZnGa2O4 nanocubes electrode also exhibites superior capacity compared with ZnGa2O4 nanospheres electrode which is consisted of secondary nanoparticles. Large amount of ZnGa2O4 nanocubes could retain their morphology after 160 charge/discharge cycles and further surface elemental analysis illustrates elements distributions has no changes in the surface. The unique structure and high crystallinity is responsible for higher capacity and better cycling stability. (C) 2017 Published by Elsevier Ltd.
收录类别:SCOPUS;SCIE
WOS核心被引频次:4
Scopus被引频次:5
资源类型:期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85016019314&doi=10.1016%2fj.electacta.2017.03.122&partnerID=40&md5=c80c50f185d216a7188bfcfa27820911
TOP