标题:MPC based control strategy for battery energy storage station in a grid with high photovoltaic power penetration
作者:Zhang, Feng; Fu, Aihui; Ding, Lei; Wu, Qiuwei
作者机构:[Zhang, Feng; Fu, Aihui; Ding, Lei; Wu, Qiuwei] Shandong Univ, Key Lab Power Syst Intelligent Dispatch & Control, Minist Educ, 17923 Jingshi Rd, Jinan 更多
通讯作者:Ding, Lei;Ding, L
通讯作者地址:[Ding, L]Shandong Univ, Key Lab Power Syst Intelligent Dispatch & Control, Minist Educ, 17923 Jingshi Rd, Jinan 250061, Shandong, Peoples R China.
来源:INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS
出版年:2020
卷:115
DOI:10.1016/j.ijepes.2019.105448
关键词:Battery energy storage station (BESS); Photovoltaic power; Ramp-rate;; Automatic generation control (AGC); Model prediction control (MPC)
摘要:The AGC (automatic generation control) reserve capacity requirement in a gird with high photovoltaic (PV) power penetration is much higher than that in a traditional grid in order to address the rapid PV power fluctuation, which also means a higher operating cost of the power grid. In contrast with the dispersed energy storage units located in PV plants, the integration of battery energy storage station (BESS) in a power grid can effectively mitigate the PV power fluctuation and decrease the AGC reserve capacity, reducing the operating cost from the aspect of the power grid operator. However, currently BESS is still an expensive option in view of the high price per unit size. Consequently, the determined BESS with size-limited capacity needs to be fully utilized to improve the economic performance of both BESS and the power grid. For this reason, a novel model prediction control (MPC) based control strategy for BESS is presented in this paper, aiming to minimize the equivalent operating cost of BESS during each control step. Specifically, the impact of PV power on AGC reserve capacity and the necessity of BESS in a grid with high PV power penetration are firstly discussed. And then, based on the equivalent cost analysis of BESS, an objective function is presented aiming to minimize the equivalent operating cost of the power gird and BESS during each control period, including the AGC payment and BESS operating cost. Besides, to prolong the lifetime of BESS, a protection measure is presented via the adjustment of BESS charge/discharge power. Afterwards, the application steps of the presented control strategy are presented. Finally, the proposed control strategy is verified using actual PV power data in a grid with high PV power penetration.
收录类别:EI;SCOPUS;SCIE
资源类型:期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070256391&doi=10.1016%2fj.ijepes.2019.105448&partnerID=40&md5=0c372e14e52608105b4338b83ea7b0ba
TOP