标题:Nucleation location and propagation direction of radial and median cracks for brittle material in scratching
作者:Li, Xinying; Gao, Yufei; Ge, Peiqi; Zhang, Lei; Bi, Wenbo; Meng, Jianfeng
作者机构:[Li, Xinying; Gao, Yufei; Ge, Peiqi; Zhang, Lei; Bi, Wenbo; Meng, Jianfeng] Shandong Univ, Sch Mech Engn, Jinan 250061, Shandong, Peoples R China.; 更多
通讯作者:Gao, Yufei;Gao, YF
通讯作者地址:[Gao, YF]Shandong Univ, Sch Mech Engn, Jinan 250061, Shandong, Peoples R China.
来源:CERAMICS INTERNATIONAL
出版年:2019
卷:45
期:6
页码:7524-7536
DOI:10.1016/j.ceramint.2019.01.046
关键词:Brittle material; Elastic stress field; Single abrasive scratching;; Crack nucleation location; Crack propagation direction
摘要:At present, diamond wire sawing technology is a mainstream method for wafering brittle materials such as silicon crystal, SiC crystal, sapphire, ceramics, optical glass and so on. Microcracks will occur on the wafers surface inevitably during sawing owing to the high brittleness and hardness of brittle material. The existence of microcracks and their size, orientation and distribution not only affect the surface quality and fracture strength of wafers, but also have an important impact on the subsequent processing effect of wafers after sawing. Therefore, the further investigation on the formation and propagation direction of microcracks is needed during diamond wire sawing. In this paper, an analytical model of the elastic stress field for brittle material is established during single abrasive scratching. The stress fields in front of and behind the indenter are analyzed respectively. Two different material removal modes, ductile removal and brittle removal, are considered. To evaluate the two different material removal modes, influence factor mu is proposed. The nucleation location and propagation direction of radial crack and median crack of several materials are predicted by analytical model. The result show that the radial crack nucleates behind the indenter. The deflection angle between propagation direction and scratching direction is about 35-60 degrees, and its size depend on the material removal modes. The nucleation location of median crack is no longer at the bottom of the plastic zone, but will deflect toward the scratching direction during scratching. The size of deflection angle depends on the tip half angle of indenter. When the tip half angle is 55-80 degrees, the deflection angle decreases with the increase of the indenter half angle. All predicted results are in good agreement with the experimental data of relevant scholars. At the end, the half-penny crack (radial/median crack system) presented in indentation process is extended to scratching process.
收录类别:EI;SCOPUS;SCIE
资源类型:期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059917102&doi=10.1016%2fj.ceramint.2019.01.046&partnerID=40&md5=5e04e98b6e00fc7451f4aba0d3a94be9
TOP