标题:Detection of fat content in peanut kernels based on chemometrics and hyperspectral imaging technology
作者:Sun, Jianfei ;Wang, Guangxian ;Zhang, Hui ;Xia, Lianming ;Zhao, Wenping ;Guo, Yemin ;Sun, Xia
作者机构:[Sun, Jianfei ;Wang, Guangxian ;Zhang, Hui ;Xia, Lianming ;Zhao, Wenping ;Guo, Yemin ;Sun, Xia ] School of Agricultural Engineering and Food Science, 更多
通讯作者:Guo, Yemin
通讯作者地址:[Guo, Y] School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun West Road, China;
来源:Infrared Physics and Technology
出版年:2020
卷:105
DOI:10.1016/j.infrared.2020.103226
关键词:Fat content; Hyperspectral imaging; Multiple linear regression; Peanut kernel; Successive projections algorithm
摘要:Hyperspectral imaging technology combined with chemometrics were applied to detect fat content in peanut kernels. Four varieties of peanuts were scanned to acquire hyperspectral images by using a “push-broom” system. Then, the spectral data was extracted from hyperspectral images. Principal component analysis (PCA) was used to detect outliers. After outliers removed, five different pre-processing methods were used to preprocess spectral data. Successive projections algorithm (SPA) and regression coefficient (RC) were adopted to select effective wavelengths. Finally, based on the full wavelengths and the effective wavelengths, the models of partial least squares regression (PLSR), support vector machine regression (SVR) and multiple linear regression (MLR) were established respectively. Comparing these models, Baseline-SPA-MLR was the most excellent with determination coefficient (R2 p) of 0.9736, root mean square errors (RMSEp) of 0.4635% and residual prediction deviation (RPD) of 6.1273 in the prediction set. All results in this study indicated that the combination of chemometrics and hyperspectral imaging technology provided an efficient and non-destructive method for detecting the fat content in peanut kernels. © 2020 Elsevier B.V.
收录类别:EI;SCOPUS
资源类型:期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85079327958&doi=10.1016%2fj.infrared.2020.103226&partnerID=40&md5=e2f0273596e8aabfd838962b1d42d0ee
TOP