标题:Preparation and electrochemical performances of graphene/polypyrrole nanocomposite with anthraquinone-graphene oxide as active oxidant
作者:Han, Yongqin; Wang, Tianqi; Li, Tingxi; Gao, Xiaoxiao; Li, Wei; Zhang, Zonglin; Wang, Yanmin; Zhang, Xiaogang
作者机构:[Han, Yongqin; Wang, Tianqi; Li, Tingxi; Gao, Xiaoxiao; Li, Wei; Zhang, Zonglin; Wang, Yanmin] Shandong Univ Sci & Technol, Dept Polymer Mat, Coll Mat 更多
通讯作者:Han, Yongqin
通讯作者地址:[Han, YQ]Shandong Univ Sci & Technol, Dept Polymer Mat, Coll Mat Sci & Engn, Qingdao 266510, Peoples R China;[Zhang, XG]Nanjing Univ Aeronaut & Astron 更多
来源:CARBON
出版年:2017
卷:119
页码:111-118
DOI:10.1016/j.carbon.2017.04.030
摘要:A simple and facile method for graphene/polypyrrole nanocomposite (GPy) was developed using sodium anthraquinone-2-sulfonate monohydrate (AQS) and anthraquinone-2,6-disulfonic acid disodium salt (AQDS) as both the "oxidizing active agents" as well as "redox modifier". The AQ(D)S modified graphene oxide(GO) played the role of "active oxidant" to in situ polymerize pyrrole and convert itself to AQ(D) S modified graphene synchronously at 70 degrees C. The analysis of Fourier transform infrared spectroscopy (FTIR), Raman, X-ray Diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) all confirmed the successful polymerization of polypyrrole and the elimination of the oxygen functional groups from GO. The bipolarons present in AQ(D) S-GPy and the high doping level proved by FTIR, Raman, electron spin resonance (ESR) and N1s of XPS analysis endowed the nanocomposite improved electrochemical performances. Specifically, AQ(D) S-GPy provided both higher specific capacitances (237 and 300 F/g) and better cycle stability than that of GPy, PPy or AQDS-Graphene. Moreover, working potential windows were enlarged to 1.5 V and 1.7 V due to the redox activity of the AQ(D) S. The symmetric supercapacitor based on AQDS-GPy exhibited high energy density (31.2Wh kg(-1) at a power density of 1.12 kW kg(-1)) and good cycling stability (86% capacitance retention after 2000 cycles). (C) 2017 Elsevier Ltd. All rights reserved.
收录类别:EI;SCIE
WOS核心被引频次:3
资源类型:期刊论文
TOP