标题:An iterative learning approach to identify fractional order KiBaM model
作者:Zhao Yang;Li Yan;Zhou Fengyu;Zhou Zhongkai;Chen Yangquan
作者机构:[Zhao, Y] School of Control Science and Engineering, Shandong University, Jinan, 250061, China;[ Li, Y] School of Control Science and Engineering, Sha 更多
通讯作者:Li, Yan(liyan.sdu@gmail.com)
通讯作者地址:[Li, Y] School of Control Science and Engineering, Shandong UniversityChina;
来源:自动化学报
出版年:2017
卷:4
期:2
页码:322-331
DOI:10.1109/JAS.2017.7510358
关键词:Fractional calculus; iterative learning identification; KiBaM model; system identification
摘要:This paper discusses the parameter and differentiation order identification of continuous fractional order KiBaM models in ARX (autoregressive model with exogenous inputs) and OE (output error model) forms. The least squares method is applied to the identification of nonlinear and linear parameters, in which the Grünwald-Letnikov definition and short memory principle are applied to compute the fractional order derivatives. An adaptive P-type order learning law is proposed to estimate the differentiation order iteratively and accurately. Particularly, a unique estimation result and a fast convergence speed can be arrived by using the small gain strategy, which is unidirectional and has certain advantages than some state-of-art methods. The proposed strategy can be successfully applied to the nonlinear systems with quasi-linear characteristics. The numerical simulations are shown to validate the concepts. © 2017 Chinese Association of Automation.
收录类别:EI;CSCD;SCOPUS
Scopus被引频次:1
资源类型:期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85017620988&doi=10.1109%2fJAS.2017.7510358&partnerID=40&md5=1097fc3def42cf85e8b88d225901e542
TOP