标题:Social recommendations based on user trust and tensor factorization
作者:Zou, Ben-You ;Li, Cui-Ping ;Tan, Li-Wen ;Chen, Hong ;Wang, Shao-Qing
作者机构:[Zou, Ben-You ;Li, Cui-Ping ;Tan, Li-Wen ;Chen, Hong ;Wang, Shao-Qing ] Key Laboratory of Data Engineering and Knowledge Engineering, Ministry of Educ 更多
通讯作者:Li, Cui-Ping
来源:Ruan Jian Xue Bao/Journal of Software
出版年:2014
卷:25
期:12
页码:2852-2864
DOI:10.13328/j.cnki.jos.004725
摘要:In social networks, recommender systems can help users to deal with information overload and provide personalized recommendations to them. The trust relationship of users is used in the social networks' recommender systems. But the state-of-art algorithms only use the single trust relationship which cannot capture the trust to user's friends when looking for different items. This paper proposes a topic-based trust recommendation algorithm using tensor factorization model. As the social information changes rapidly, the state-of-art algorithms often need redo factorization. To address the issue, the paper also presents an effective incremental method to adaptively update its previous factorized components rather than re-computing them on the whole dataset when the data changes. Experiments show that the proposed method can achieve better performance and the incremental method is suitable for the rapid changes in the social networks.
© Copyright 2014, Institute of Software, the Chinese Academy of Sciences. All rights reserved.
收录类别:EI
资源类型:期刊论文
TOP