标题:Direct Ink Writing of Adjustable Electrochemical Energy Storage Device with High Gravimetric Energy Densities
作者:Zhao, Jingxin; Zhang, Yan; Zhao, Xiaoxin; Wang, Rutao; Xie, Jixun; Yang, Chengfeng; Wang, Juanjuan; Zhang, Qichong; Li, Lele; Lu, Co 更多
作者机构:[Zhao, Jingxin; Zhang, Yan; Zhao, Xiaoxin; Xie, Jixun; Yang, Chengfeng; Wang, Juanjuan; Li, Lele; Lu, Conghua] Tianjin Univ, Sch Mat Sci & Engn, Tianj 更多
通讯作者:Lu, CH;Yao, YG;Yao, YG;Yao, YG;Lu, Conghua
通讯作者地址:[Lu, CH]Tianjin Univ, Sch Mat Sci & Engn, Tianjin 300072, Peoples R China;[Yao, YG]Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion Nanchang, Nanchan 更多
来源:ADVANCED FUNCTIONAL MATERIALS
出版年:2019
卷:29
期:26
DOI:10.1002/adfm.201900809
关键词:3D printing; asymmetric supercapacitors; graphene-based hybridization; aerogels; periodic microlattices
摘要:3D printing graphene aerogel with periodic microlattices has great prospects for various practical applications due to their low density, large surface area, high porosity, excellent electrical conductivity, good elasticity, and designed lattice structures. However, the low specific capacitance limits their development in energy storage fields due to the stacking of graphene. Therefore, constructing a graphene-based 2D materials hybridization aerogel that consists of the pseduocapacitive substance and graphene material is necessary for enhancing electrochemical performance. Herein, 3D printing periodic graphene-based composite hybrid aerogel microlattices (HAMs) are reported via 3D printing direct ink writing technology. The rich porous structure, high electrical conductivity, and highly interconnected networks of the HAMs aid electron and ion transport, further enabling excellent capacitive performance for supercapacitors. An asymmetric supercapacitor device is assembled by two different 4-mm-thick electrodes, which can yield high gravimetric specific capacitance (C-g) of 149.71 F g(-1) at a current density of 0.5 A g(-1) and gravimetric energy density (E-g) of 52.64 Wh kg(-1), and retains a capacitance retention of 95.5% after 10 000 cycles. This work provides a general strategy for designing the graphene-based mixed-dimensional hybrid architectures, which can be utilized in energy storage fields.
收录类别:EI;SCIE
WOS核心被引频次:3
资源类型:期刊论文
TOP