标题:High Lithium Storage Performance of Mn-doped Sn4P3 nanoparticles
作者:Liu, Shuling; Zhang, Hongzhe; Xu, Liqiang; Ma, Lanbing; Hou, Xuan
通讯作者:Liu, SL
作者机构:[Liu, Shuling; Zhang, Hongzhe; Ma, Lanbing] Shaanxi Univ Sci & Technol, Coll Chem & Chem Engn, Xian 710021, Shaanxi, Peoples R China.; [Xu, Liqiang; 更多
会议名称:17th Topical Meeting of the International-Society-of-Electrochemistry (ISE)
会议日期:MAY 31-JUN 03, 2015
来源:ELECTROCHIMICA ACTA
出版年:2016
卷:210
页码:888-896
DOI:10.1016/j.electacta.2016.06.015
关键词:Sn4P3; Mn substitution; lithium ion battery; anode material
摘要:This paper reports the synthesis of various molar concentrations of manganese (Mn)-doped Sn4P3 nanoparticles and and their efficient use as anode materials for rechargeable lithium-ion batteries (LIBs). The nanoparticles were synthesized via a novel and facile ultrasonic assisted hydrothermal method and characterized in detail by various analytical techniques. The XRD, SEM, and TEM results showed that Mn ion was successfully substituted on the Sn4P3 layered structure without any structure changes. The long cycle stability of the as-prepared Mn-doped Sn4P3 nanoparticles have been tested as an anode material for lithium ion batteries at the different current density. By detailed experimental results exhibited that the Mn dopant content crucially determines the electrochemical performances of Sn4P3 nanoparticles. Electrochemical measurements show that the Sn4P3 nanoparticles with 0.10 mol% molar concentration of Mn dopant give the best cycling performances. They deliver a discharge capacity of 488 mAh g(-1) after 150 cycles at the current density of 100 mA g(-1). Even after 150 cycles at a current density of 200 mA g(-1), the specific capacity still could be remained at 420 mAh g(-1). Further increasing the current density to 1000 mA g(-1), it could still maintain 255 mAh g(-1) after 200 cycles. It is confirmed that Mn substitution in the Sn-Mn-P structure is an important pole to improve the structure stability and electrochemical properties. (C) 2016 Elsevier Ltd. All rights reserved.
收录类别:CPCI-S;SCOPUS;SCIE
WOS核心被引频次:3
Scopus被引频次:6
资源类型:会议论文;期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-84975129663&doi=10.1016%2fj.electacta.2016.06.015&partnerID=40&md5=8c4dd7e1c9deb5bfb47abf53280f661b
TOP