标题:HDAC9 exacerbates endothelial injury in cerebral ischaemia/reperfusion injury
作者:Shi, Weichen; Wei, Xinbing; Wang, Ziying; Han, Huirong; Fu, Yi; Liu, Jiang; Zhang, Yan; Guo, Jian; Dong, Chuanqiao; Zhou, Di; Zhou 更多
作者机构:[Shi, Weichen; Wei, Xinbing; Wang, Ziying; Han, Huirong; Fu, Yi; Liu, Jiang; Zhang, Yan; Guo, Jian; Dong, Chuanqiao; Zhou, Di; Zhou, Quan; Yi, Fan] Sh 更多
通讯作者:Yi, F
通讯作者地址:[Yi, F]Shandong Univ, Sch Med, Dept Pharmacol, Jinan 250100, Peoples R China.
来源:JOURNAL OF CELLULAR AND MOLECULAR MEDICINE
出版年:2016
卷:20
期:6
页码:1139-1149
DOI:10.1111/jcmm.12803
关键词:histone deacetylase; ischaemic stroke; blood-brain barrier; autophagy;; gene therapy
摘要:Histone deacetylase (HDAC) 9, a member of class II HDACs, regulates a wide variety of normal and abnormal physiological functions, which is usually expressed at high levels in the brain and skeletal muscle. Although studies have highlighted the importance of HDAC-mediated epigenetic processes in the development of ischaemic stroke and very recent genome-wide association studies have identified a variant in HDAC9 associated with large-vessel ischemic stroke, the molecular events by which HDAC9 induces cerebral injury keep unclear. In this study, we found that HDAC9 was up-regulated in the ischaemic cerebral hemisphere after cerebral ischaemia/reperfusion (I/R) injury in rats and in vivo gene silencing of HDAC9 by recombinated lentivirus infection in the brain reduced cerebral injury in experimental stroke. We further demonstrated that HDAC9 contributed to oxygen-glucose deprivation-induced brain microvessel endothelial cell dysfunction as demonstrated by the increased inflammatory responses, cellular apoptosis and endothelial cell permeability dysfunction accompanied by reduced expression of tight-junction proteins. We further found that HDAC9 suppressed autophagy, which was associated with endothelial dysfunction. This study for the first time provides direct evidence that HDAC9 contributes to endothelial cell injury and demonstrates that HDAC9 is one of critical components of a signal transduction pathway that links cerebral injury to epigenetic modification in the brain.
收录类别:SCIE
WOS核心被引频次:10
资源类型:期刊论文
TOP