标题:Boosting Electrochemistry of Manganese Oxide Nanosheets by Ostwald Ripening during Reduction for Fiber Electrochemical Energy Storage Device
作者:Jia, Dedong; Chen, Xianqi; Tan, Hua; Liu, Fang; Yue, Lijun; Zheng, Yiwei; Cao, Xueying; Li, Chenwei; Sun, Yuanyuan; Liu, Hong; Liu 更多
作者机构:[Jia, Dedong; Chen, Xianqi; Liu, Fang; Yue, Lijun; Zheng, Yiwei; Cao, Xueying; Li, Chenwei; Sun, Yuanyuan; Liu, Jingquan] Qingdao Univ, Coll Mat Sci & 更多
通讯作者:Jia, DD;Liu, JQ;Liu, H;Liu, H;Jia, Dedong
通讯作者地址:[Jia, DD; Liu, JQ]Qingdao Univ, Coll Mat Sci & Engn, Qingdao 266071, Shandong, Peoples R China;[Liu, H]Shandong Univ, State Key Lab Crystal Mat, Jinan 更多
来源:ACS APPLIED MATERIALS & INTERFACES
出版年:2018
卷:10
期:36
页码:30388-30399
DOI:10.1021/acsami.8b09592
关键词:supercapacitor; oxygen vacancies; Ostwald ripening; asymmetric; wearable
摘要:The poor electronic conductivity of MnOx severely limits the practical application as high-performance electrode materials for faradaic pseudocapacitors. Herein, a facile vapor reduction method is demonstrated for the treatment of MnOx with hydrazine hydrate (HH) to improve the electronic conductivity. The HH vapor treatment without annealing process not only introduces oxygen vacancies to form oxygen-deficient MnOx but also leads to obvious structural transformation from highly aggregated and poorly crystallized MnOx nanorobs and nanoparticles into uniformly orientated and highly crystallized MnOx nanosheets via the Ostwald ripening process. Compared with pristine MnOx on carbon fiber (CF-MnOx), the reduced CF-MnOx exhibits a highly improved specific capacitance of 1130 mF cm(-1) (434 F g(-1)) with excellent rate capability and cycling stability. Our results have shown that the moderate concentration of oxygen vacancies and highly uniform orientation of reduced MnOx endow the electrode with a fast electron and ion transport, respectively. Moreover, a flexible fiber asymmetric supercapacitor (ASC) device with high-energy and power density based on the as-prepared reduced CF-MnOx as a cathode and electrochemically activated graphene oxide on carbon fiber (CF-ArGO) as an anode is fabricated. The MnOx//ArGO ASC device delivers a high volumetric capacitance of 1.9 F cm(-3), a maximum energy density of 1.06 mWh cm(-3), and a volumetric power density of 371.3 mW cm(-3). The present work opens a new way for oxygen vacancy introduction and structural modification of metal oxide as high-performance materials for energy storage applications.
收录类别:EI;SCOPUS;SCIE
资源类型:期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85052304586&doi=10.1021%2facsami.8b09592&partnerID=40&md5=a34fae51ce1e5941cb069027e0e3e3cb
TOP