标题:A novel direct feature-based seizure detector: Using the entropy of degree distribution of epileptic EEG signals
作者:Meng, Qingfang ;Wang, Fenglin ;Zhou, Weidong ;Chen, Shanshan
作者机构:[Meng, Qingfang ;Wang, Fenglin ;Chen, Shanshan ] School of Information Science and Engineering, University of Jinan, Jinan, China;[Zhou, Weidong ] Sch 更多
会议名称:2013 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA 2013
会议日期:29 October 2013 through 1 November 2013
来源:2013 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA 2013
出版年:2013
DOI:10.1109/APSIPA.2013.6694356
摘要:The electroencephalogram (EEG) signals with different brain states show different nonlinear dynamics. Recently the statistical properties of complex networks theory have been applied to explore the nonlinear dynamics of time series, which studies the dynamics of time series via its organization. This study combines the complex networks theory with epileptic EEG analysis and applies the statistical properties of complex networks to the automatic epileptic EEG detection. We construct the complex networks from the epileptic EEG series and then calculate the entropy of the degree distribution of the network (NDDE). The NDDE corresponding to the ictal EEG is lower than interictal EEG's. The experiment result shows that the approach using the NDDE as a classification feature obtains robust performance of epileptic seizure detection and the accuracy is up to 95.75%. © 2013 APSIPA.
收录类别:EI;SCOPUS
资源类型:会议论文;期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-84893264643&doi=10.1109%2fAPSIPA.2013.6694356&partnerID=40&md5=79590e6cc25ed3e5011e7ce570609dae
TOP