标题:Analyzing the educational goals, problems and techniques used in educational big data research from 2010 to 2018
作者:Quadir B.; Chen N.-S.; Isaias P.
作者机构:[Quadir, B] Department of Information Management School of Business, Shandong University of Technology, Zibo, China;[ Chen, N.-S] Department of Applie 更多
通讯作者:Quadir, B(benazir.quadir@gmail.com)
通讯作者地址:[Quadir, B] Department of Information Management School of Business, Shandong University of TechnologyChina;
来源:Interactive Learning Environments
出版年:2020
DOI:10.1080/10494820.2020.1712427
关键词:educational big data; educational data mining; Educational goals; educational problems; learning analytics meta-analysis
摘要:The purpose of this study is to review journal papers on educational big data research published from 2010 to 2018. A total of 143 papers were selected. The papers were characterized based on three dimensions: (a) educational goals; (b) educational problems addressed; and (c) big data analytical techniques used. A qualitative content analysis approach was conducted to develop a coding scheme for analyzing the selected papers. The results identified four types of educational goals, with a clear predominance of quality assurance. The identification of the most mentioned educational problems resulted in four main concerns: the lack of detecting student behavior modeling and waste of resources; inappropriate curricula and teaching strategies; oversights of quality assurance; and privacy and ethical issues. Concerning the most mentioned big data analytical techniques, the coding scheme revealed that the majority of the papers focused on the educational data mining technique followed by the learning analytics technique. The visual analytics technique was mentioned in a few papers. The results also indicated that the educational data mining technique is the most suitable technique to use for quality assurance and to provide potential solutions for the lack of detecting student behavior modeling and the waste of resources in institutions. © 2020, © 2020 Informa UK Limited, trading as Taylor & Francis Group.
收录类别:SCOPUS
资源类型:期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078825039&doi=10.1080%2f10494820.2020.1712427&partnerID=40&md5=3678efe3122b328b3006f4b80cb66064
TOP