标题:Hydrogen production via a two-step water splitting thermochemical cycle based on metal oxide - A review
作者:Mao, Yanpeng; Gao, Yibo; Dong, Wei; Wu, Han; Song, Zhanlong; Zhao, Xiqiang; Sun, Jing; Wang, Wenlong
作者机构:[Mao, Yanpeng; Gao, Yibo; Dong, Wei; Wu, Han; Song, Zhanlong; Zhao, Xiqiang; Sun, Jing; Wang, Wenlong] Shandong Univ, Natl Engn Lab Reducing Emiss Coa 更多
通讯作者:Mao, Y(maoyanpeng@sdu.edu.cn)
通讯作者地址:Mao, YP (corresponding author), Shandong Univ, Natl Engn Lab Reducing Emiss Coal Combust, Engn Res Ctr Environm Thermal Technol,Sch Energy, Minist Edu 更多
来源:APPLIED ENERGY
出版年:2020
卷:267
DOI:10.1016/j.apenergy.2020.114860
关键词:Hydrogen; Two-step water splitting; Solar energy; Metal oxide; Chemical; reactor
摘要:Hydrogen production via a two-step thermochemical cycle has attracted considerable research interest as it can directly utilize the heat of the high temperature reactor, which eliminates the need for power generation steps and increases energy efficiency, and is understood to be a promising method for producing hydrogen on an industrial scale. The thermochemical cycle uses a metal oxide as a catalyst and involves two steps: thermal reduction and water splitting. The cycle process only requires the input of heat and water to continuously regenerate hydrogen and oxygen, which has almost no impact on the environment and has the potential for sustainable development. Herein we reviewed the two-step thermochemical cycle with regard to reaction heat source, metal oxide characteristics, and chemical reactors. The performance of volatile and non-volatile metal oxides in the cycle reactions has been thoroughly investigated. To date, the most widely studied metal oxides are ZnO/Zn, SnO2/SnO, ceria-based oxides, and iron-based oxides. Among them, doped-ceria and iron-based oxides, which have high redox activities and cycle stabilities, are considered to be the most promising materials. The possibility of achieving large-scale industrial production and the perspective on future material development were also analyzed. It was proved that the poly-cation oxides (PCOs) studied have great potential for hydrolysis, and the use of oxygen transport membrane reactor provides a new perspective for solar hydrogen production.
收录类别:SCOPUS;SCIE
Scopus被引频次:2
资源类型:期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85084212171&doi=10.1016%2fj.apenergy.2020.114860&partnerID=40&md5=83af77ed493a8e2caaef1c81aec7d5ac
TOP