标题:Multiscale registration of medical images based on edge preserving scale space with application in image-guided radiation therapy
作者:Li,D.;Li,H.;Wan,H.;Chen,J.;Gong,G.;Wang,H.;Wang,L.;Yin,Y.
作者机构:[Li, D] College of Physics and Electronics, Shandong Normal University, Jinan, China;[ Li, H] Departments of Radiation Oncology and Physics, Shandong 更多
通讯作者:Yin, Y.
通讯作者地址:[Yin, Y]Shandong Canc Hosp & Inst, Dept Radiat Oncol & Phys, Jinan, Peoples R China.
来源:Physics in medicine and biology
出版年:2012
卷:57
期:16
页码:5187-5204
DOI:10.1088/0031-9155/57/16/5187
摘要:Mutual information (MI) is a well-accepted similarity measure for image registration in medical systems. However, MI-based registration faces the challenges of high computational complexity and a high likelihood of being trapped into local optima due to an absence of spatial information. In order to solve these problems, multi-scale frameworks can be used to accelerate registration and improve robustness. Traditional Gaussian pyramid representation is one such technique but it suffers from contour diffusion at coarse levels which may lead to unsatisfactory registration results. In this work, a new multi-scale registration framework called edge preserving multiscale registration (EPMR) was proposed based upon an edge preserving total variation L1 norm (TV-L1) scale space representation. TV-L1 scale space is constructed by selecting edges and contours of images according to their size rather than the intensity values of the image features. This ensures more meaningful spatial information with an EPMR framework for MI-based registration. Furthermore, we design an optimal estimation of the TV-L1 parameter in the EPMR framework by training and minimizing the transformation offset between the registered pairs for automated registration in medical systems. We validated our EPMR method on both simulated mono- and multi-modal medical datasets with ground truth and clinical studies from a combined positron emission tomography/computed tomography (PET/CT) scanner. We compared our registration framework with other traditional registration approaches. Our experimental results demonstrated that our method outperformed other methods in terms of the accuracy and robustness for medical images. EPMR can always achieve a small offset value, which is closer to the ground truth both for mono-modality and multi-modality, and the speed can be increased 58% for mono-modality and 1014% for multi-modality registration under the same condition. Furthermore, clinical application by adaptive gr
收录类别:EI;SCOPUS;SCIE
WOS核心被引频次:8
Scopus被引频次:12
资源类型:期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-84864462733&doi=10.1088%2f0031-9155%2f57%2f16%2f5187&partnerID=40&md5=3d33d8e6532f5688f91b447cce8b0c90
TOP