标题:A weak Galerkin finite element method for solving nonlinear convection-diffusion problems in two dimensions
作者:Cheichan, Mohammed S.; Kashkool, Hashim A.; Gao, Fuzheng
作者机构:[Cheichan, Mohammed S.; Kashkool, Hashim A.] Univ Basrah, Coll Educ Pure Sci, Dept Math, Basrah, Iraq.; [Gao, Fuzheng] Shandong Univ, Sch Math, Jina 更多
通讯作者:Gao, Fuzheng;Gao, FZ
通讯作者地址:[Gao, FZ]Shandong Univ, Sch Math, Jinan, Shandong, Peoples R China.
来源:APPLIED MATHEMATICS AND COMPUTATION
出版年:2019
卷:354
页码:149-163
DOI:10.1016/j.amc.2019.02.043
关键词:Weak Galerkin; Finite element method; Nonlinear convection-diffusion; problem; Energy conservation; Stability; Error estimate
摘要:We study weak Galerkin (WG) finite element method (FEM) for solving nonlinear convection-diffusion problems. A WG finite element scheme is presented based on a new variational form. We prove the energy conservation law and stability of the continuous time WG FEM. In particular, optimal order error estimates are established for the WG FEM approximation in both a discrete H-1-norm and L-2-norm. Numerical experiments are performed to confirm the theoretical results. (C) 2019 Elsevier Inc. All rights reserved.
收录类别:EI;SCOPUS;SCIE
资源类型:期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062032623&doi=10.1016%2fj.amc.2019.02.043&partnerID=40&md5=1872de4484a56168afa7819a654d75ca
TOP