标题:Single and combined effects of amino polystyrene and perfluorooctane sulfonate on hydrogen-producing thermophilic bacteria and the interaction mechanisms
作者:Chen, Wanying; Yuan, Dong; Shan, Min; Yang, Zhongbao; Liu, Chunguang
作者机构:[Chen, Wanying; Shan, Min; Liu, Chunguang] Shandong Univ, China Amer CRC Environm & Hlth Shandong Prov, Sch Environm Sci & Engn, 72 Jimo Binhai Rd, Qi 更多
通讯作者:Liu, Chunguang;Liu, CG
通讯作者地址:[Liu, CG]Shandong Univ, China Amer CRC Environm & Hlth Shandong Prov, Sch Environm Sci & Engn, 72 Jimo Binhai Rd, Qingdao 266237, Shandong, Peoples R 更多
来源:SCIENCE OF THE TOTAL ENVIRONMENT
出版年:2020
卷:703
DOI:10.1016/j.scitotenv.2019.135015
关键词:Nano-toxicity; Nano-plastics; Hydrogen fermentation; Extracellular; polymers; Antagonistic effect; Perfluorinated compounds
摘要:As a carrier of perfluorooctane sulfonate, nano-plastics are ubiquitous and finally enriched in the sludge, which is widely used as a raw material for the production of bioenergy (hydrogen or methane) by anaerobic digestion. However, there are still many unknowns about their metabolic toxicity to functional microbes (e.g. hydrogen-producing thermophilic bacteria). Therefore, single and combined effects of amino polystyrene (NPS: 70 nm; 0.2 mg/L) and perfluorooctane sulfonate (PFOS: 0.1, 1 and 5 mg/L) on hydrogen-producing thermophilic bacteria were investigated after exposure for 7 days at 55 degrees C and pH = 5.7. Single NPS exhibited obvious interference to the metabolism of thermophilic bacteria, resulting in a 53.9% reduction in hydrogen production. However, the combined NPS + PFOS produced an antagonistic effect, leading to a 31.6% reduction in hydrogen production. Nonetheless, the single and combined exposure did not alter the type of hydrogen production (acetic acid-type hydrogen fermentation). Moreover, single NPS and combined NPS + PFOS not only induced the changes of the composition of extracellular polymers (EPSs) and pi bond structure of the protein in EPSs, but also decreased the activity of hydrolase in EPSs and surface charge of EPSs. Compared to single NPS exposure, NPS + PFOS-exposed thermophilic bacteria was less permeable to a semi-membrane permeable dye and produced less reactive oxygen species, but were still significantly higher than control group. In short, the main mechanisms of single NPS and combined NPS + PFOS were both to increase cell permeability and to induce oxidative stress. The addition of PFOS alleviated the toxic effect of NPS, but did not change its mechanism of toxicity. (C) 2019 Elsevier B.V. All rights reserved.
收录类别:EI;SCOPUS;SCIE
资源类型:期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074794601&doi=10.1016%2fj.scitotenv.2019.135015&partnerID=40&md5=db6c43dbc6c7cfe0ec8be4355e544743
TOP