标题:基于细致化仿生的改进粒子群优化算法
作者:王兴元;张鹏
作者机构:[王兴元] 山东大学管理学院, 济南, 山东 250100, 中国.;[张鹏] 山东大学管理学院, 济南, 山东 250100, 中国
通讯作者:Wang, XY(wangxingyuan@126.com)
通讯作者地址:[Wang, X.-Y] School of Management, Shandong University, Jinan 250100, China;
来源:系统工程与电子技术
出版年:2012
卷:34
期:7
页码:1484-1492
DOI:10.3969/j.issn.1001-506X.2012.07.33
关键词:粒子群优化; 改进粒子群优化; 满意粒子; 探索粒子; 细致化仿生
摘要:粒子群优化(particle swarm optimization,PSO)算法基本思想是试图通过模拟鸟群觅食中的迁徙和聚集等行为获得连续非线性函数的最佳值,其仿生算法产生于对鸟群寻食过 程中飞行方向与飞行速度等的隐喻。近年对粒子群算法经典算法的研究,虽然在速度及精度上有所改进,但由于缺乏细致化仿生(precise bionic meta-phor,PBM),改进效果并不太明显。通过在PSO算法中引入飞鸟寻食细致化行为特征隐喻,即在算法中同时导入满意粒子局地细致化寻优和探 索粒子随机寻优过程,进而提出了一种新的基于细致化仿生的改进PSO算法;对改进算法和经典算法进行了性能比较,结果显示所提算法在收敛速度和求解精度方 面较经典算法有很大程度的改善。
收录类别:EI;CSCD;SCOPUS
Scopus被引频次:1
资源类型:期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-84865968031&doi=10.3969%2fj.issn.1001-506X.2012.07.33&partnerID=40&md5=ca0e317eafe93b95d537f8808405a46a
TOP