标题:Distributed multi-scenario optimal sizing of integrated electricity and gas system based on ADMM
作者:Chen, Jian; Lin, Ziliang; Ren, Junzhi; Zhang, Weitong; Zhou, Yue; Zhang, Yicheng
作者机构:[Chen, Jian; Lin, Ziliang; Ren, Junzhi; Zhang, Weitong] Shandong Univ, Key Lab Power Syst Intelligent Dispatch & Control, Minist Educ, Jinan 250061, P 更多
通讯作者:Chen, Jian;Chen, J
通讯作者地址:[Chen, J]Shandong Univ, Key Lab Power Syst Intelligent Dispatch & Control, Minist Educ, Jinan 250061, Peoples R China.
来源:INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS
出版年:2020
卷:117
DOI:10.1016/j.ijepes.2019.105675
关键词:Integrated electricity and gas system (IEGS); Optimal sizing;; Multi-scenario; Distributed optimization; Alternating direction; multiplier method (ADMM)
摘要:The evolution and application of energy conversion equipment such as gas turbines and power to gas (P2G) has greatly improved the coupling characteristics of integrated electricity and gas system (IEGS). Therefore, it is necessary to take natural gas system into consideration when coping with the optimal sizing problems for electricity system. However, it is difficult to solve the problem based on a single typical scenario during the long-term planning period. This paper proposes a distributed multi-scenario optimization framework based on alternating direction multiplier method (ADMM), decoupling the original optimal sizing problem into an investment sub-problem and multiple operation sub-problems considering multiple scenarios. In addition, this paper establishes a bidirectional coupling IEGS model which includes the dynamic characteristic of the gas system and uncertainties of renewable energy and load. In order to evaluate the feasibility, the proposed framework and model are applied to a modified IEEE 33 nodes system combined with 7 nodes gas system. Case studies are presented to further study the impact of operation flexibility, lifetime loss and cost reduction potential of battery energy storage system (BESS). The results indicate that the proposed framework can effectively deal with the multi-scenario optimal sizing problem of IEGS. Moreover, this method also have a good performance in analyzing the influence of flexibility, battery lifetime and multi-stage investment strategy.
收录类别:EI;SCOPUS;SCIE
资源类型:期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074693772&doi=10.1016%2fj.ijepes.2019.105675&partnerID=40&md5=3f09047f88b7663158f61660fe79a874
TOP