标题:Local antimagic orientations of d-degenerate graphs
作者:Hu, Jie; Ouyang, Qiancheng; Wang, Guanghui
作者机构:[Hu, Jie; Ouyang, Qiancheng; Wang, Guanghui] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China.
通讯作者:Wang, Guanghui;Wang, GH
通讯作者地址:[Wang, GH]Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China.
来源:DISCRETE APPLIED MATHEMATICS
出版年:2019
卷:257
页码:206-215
DOI:10.1016/j.dam.2018.10.012
关键词:Local antimagic orientation; Degenerate graph; Combinatorial; Nullstellensatz
摘要:A k-antimagic labeling of a digraph D with n vertices and m arcs is an injection from the set of arcs of D to the integers {1, ..., m + k} such that all n vertex-sums are pairwise distinct, where the vertex-sum of a vertex v is the sum of labels of all arcs entering v minus the sum of labels of all arcs leaving v. An orientation D of a graph G is called k-antimagic if D has a k-antimagic labeling. Hefetz et al. (2010) conjectured that every connected graph admits an antimagic orientation, where "antimagic" is short for "0-antimagic". In this paper, we consider local k-antimagic orientations of graphs. An orientation D of a graph G is called local k-antimagic if there is an injective edge labeling from E(G) to {1, ..., IE(G)1+k such that any two adjacent vertices of D have different vertex-sums. We prove that every d-degenerate graph admits a local (d+2)-antimagic orientation. (C) 2018 Elsevier By. All rights reserved.
收录类别:EI;SCOPUS;SCIE
资源类型:期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055736926&doi=10.1016%2fj.dam.2018.10.012&partnerID=40&md5=8704446b085416f10b5209c0d586b4e9
TOP