标题:List strong edge coloring of planar graphs with maximum degree 4
作者:Chen, Ming; Hu, Jie; Yu, Xiaowei; Zhou, Shan
作者机构:[Chen, Ming; Yu, Xiaowei; Zhou, Shan] Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Jiangsu, Peoples R China.; [Hu, Jie] Shandong Univ, Sch M 更多
通讯作者:Zhou, S
通讯作者地址:[Zhou, S]Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Jiangsu, Peoples R China.
来源:DISCRETE MATHEMATICS
出版年:2019
卷:342
期:5
页码:1471-1480
DOI:10.1016/j.disc.2018.10.034
关键词:Planar graph; Strong choice number; Hall's theorem
摘要:A strong-edge-coloring of a graph is a proper edge coloring in which every color class is an induced matching. The strong chromatic index of G, denoted by chi(s)'(G), is the minimum number of colors to construct such a coloring. In an analogous way, we can define the list version of strong chromatic index. In this paper we prove that if G is a planar graph with maximum degree at most four , then the list strong chromatic index is at most 19. (C) 2018 Published by Elsevier B.V.
收录类别:SCOPUS;SCIE
资源类型:期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061671421&doi=10.1016%2fj.disc.2018.10.034&partnerID=40&md5=3b3e9493749c71a0ab05db2e70243949
TOP