标题:Two-sided bounds of the discretization error for finite elements
作者:K?í?ek, M.;Roos, H.-G.;Chen, W.
作者机构:[Křížek, M] Institute of Mathematics, Academy of Sciences, Žitná 25, 115 67 Prague 1, Czech Republic;[ Roos, H.-G] Institute of Numerical Mathematics 更多
通讯作者:Krˇízˇek, M
通讯作者地址:[Krizek, M]Acad Sci Czech Republic, Inst Math, Zitna 25, CR-11567 Prague 1, Czech Republic.
来源:RAIRO. Mathematical Modelling and Numerical Analysis. = Modelisation Mathematique et Analyse Numerique
出版年:2011
卷:45
期:5
页码:915-924
DOI:10.1051/m2an/2011003
关键词:Céa\'s lemma;Lagrange finite elements;Lower error estimates.;Superconvergence
摘要:We derive an optimal lower bound of the interpolation error for linear finite elements on a bounded two-dimensional domain. Using the supercloseness between the linear interpolant of the true solution of an elliptic problem and its finite element solution on uniform partitions, we further obtain two-sided a priori bounds of the discretization error by means of the interpolation error. Two-sided bounds for bilinear finite elements are given as well. Numerical tests illustrate our theoretical analysis.
收录类别:EI;SCOPUS;SCIE
WOS核心被引频次:5
Scopus被引频次:5
资源类型:期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-80051999217&doi=10.1051%2fm2an%2f2011003&partnerID=40&md5=8100aee31d205be06091f2eb14d247bc
TOP