标题:MMFNet: A multi-modality MRI fusion network for segmentation of nasopharyngeal carcinoma
作者:Chen H.; Qi Y.; Yin Y.; Li T.; Liu X.; Li X.; Gong G.; Wang L.
作者机构:[Chen, H] Department of Automation, Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, 200240, China;[ Qi 更多
通讯作者:Gong, G(gongguanzhong@yeah.net)
通讯作者地址:[Gong, G] Shandong Cancer Hospital Affiliated to Shandong UniversityChina;
来源:Neurocomputing
出版年:2020
DOI:10.1016/j.neucom.2020.02.002
关键词:3D Convolutional block attention module; Multi-modality MRI; Nasopharyngeal carcinoma; Residual fusion block; Segmentation; Self-transfer
摘要:Segmentation of nasopharyngeal carcinoma (NPC) from Magnetic Resonance Images (MRI) is a crucial prerequisite for NPC radiotherapy. However, manual segmenting of NPC is time-consuming and labor-intensive. In addition, single-modality MRI generally cannot provide enough information for accurate delineation. Therefore, a novel multi-modality MRI fusion network (MMFNet) is proposed to complete accurate segmentation of NPC via utilizing T1, T2 and contrast-enhanced T1 of MRI. The backbone of MMFNet is designed as a multi-encoder-based network, consisting of several encoders and one decoder, where the encoders aim to capture modality-specific features and the decoder is to obtain fused features for NPC segmentation. A fusion block consisting of a 3D Convolutional Block Attention Module (3D-CBAM) and a residual fusion block (RFBlock) is presented. The 3D-CBAM recalibrates low-level features captured from modality-specific encoders to highlight both informative features and regions of interest (ROIs) whereas the RFBlock fuses re-weighted features to keep balance between fused ones and high-level features from decoder. Moreover, a training strategy named self-transfer is also proposed which utilizes pre-trained modality-specific encoders to initialize multi-encoder-based network in order to make full mining of individual information from multi-modality MRI. The proposed method based on multi-modality MRI can effectively segment NPC and its advantages are validated by extensive experiments. © 2020 Elsevier B.V.
收录类别:SCOPUS
资源类型:期刊论文
原文链接:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85079544328&doi=10.1016%2fj.neucom.2020.02.002&partnerID=40&md5=10d99d0d8c413b985b240557de7dec53
TOP