标题:EDA-USL: Unsupervised clustering algorithm based on estimation of distribution algorithm
作者:Fan, Jiancong ;Liang, Yongquan ;Xu, Qiang ;Jia, Ruisheng ;Cui, Zhihua
作者机构:[Fan, Jiancong ;Liang, Yongquan ;Xu, Qiang ;Jia, Ruisheng ] College of Information Science and Engineering, Shandong University of Science and Technol 更多
通讯作者:Fan, J
来源:International Journal of Wireless and Mobile Computing
出版年:2011
卷:5
期:1
页码:88-97
DOI:10.1504/IJWMC.2011.044111
摘要:Clustering analysis is primarily concerned with the classification of data points into different clusters. Estimation of distribution algorithms (EDAs) uses machine learning techniques to solve optimisation problems by trying to learn the locations of the more promising regions of the search space. In EDAs a population may be approximated with a probability distribution, and new candidate solutions can be obtained by sampling from this distribution, instead of combining and modifying existing solutions in a stochastic way. Unsupervised clustering learning algorithm based on estimation of distribution (EDA-USL) is designed to solve the analysis of dataset without labels. EDA-USL randomly selects a few data as individuals to construct initial population. The probability distribution of population is computed to estimate the distribution of dataset. The optimal individuals in population are selected by the designed fitness function. Then the new individuals that combine with the optimal ones to form the next generation are selected according to the classification patterns of the optimal individuals. EDA-USL is validated on the benchmark datasets and analysed. The experimental results show that EDA-USL has high stability and performs well in classification accuracy. © 2011 Inderscience Enterprises Ltd.
收录类别:EI
资源类型:期刊论文
TOP