按条件检索“325”条记录

已选条件: 数据来源: WOS × 数据来源: CSCD × 出版物中文: 化学学报 × 文献类型: 期刊论文 ×
导出
  • 排序
  • 显示
H-2(nu\',j\') + H system calculated by LCAC-SW (linear combination of arrangement channels-scattering wavefunction) approach. The compound-state formation (or energy resonance structure) of this system is analyzed. The results of the rotational-state distribution for the product of this reaction show that the energy resonance is due to the interference effect between the translational motion of the system and the internal state of the reactant. [publication_type] => J [begin_page] => 553 [article_dt] => Article [author_en] => Lu, WC; Cai, ZT; Deng, CH [volume] => 57 [get_data] => 2018-08-29 [publisher] => ACTA CHIMICA SINICA [keyword_en] => H+H-2 -> H-2 + H state-to-state reaction; compound state and its; structure; rotational-state distribution; LCAC-SW quantum reaction; scattering approach [page] => 553-556 [format_publication_cn] => 6918be3b26b1fa6ec0424f6071208a75331227575 [publication_iso] => Acta Chim. Sin. [format_title_en_publication_en_pub_year] => b660281dd30f70c04194ea622398e5141378829180 [format_title_en] => 412bf6017639af29baaa7cf91e0f38f0148795784 [publisher_city] => SHANGHAI [cauthor_order] => 1 [hx_id] => 2371 [reference_No] => 12 [format_issn_issue_page_pub_year] => 97b77fcabaf76349284ef9280e0b36a61828538320 [cite_awos] => 0 [wos_No] => WOS:000081113700003 [format_wos_No] => cd9c08eba69960a4c027d811d27bc863-2013023558 [wos_sub] => Chemistry, Multidisciplinary [research_area] => Chemistry [cauthor_back] => Lu, WC [check_180] => 0 [publisher_ad] => SHANGHAI INST ORGANIC CHEM ACADEMIA SINICA 354 FENGLING LU, SHANGHAI; 200032, PEOPLES R CHINA [title_en] => A quantum scattering theoretical study on the compound-state formation and the rotational-state distribution of the product for the three-dimensional state-to-state H+H-2(v,j)-> H-2(v \',j \')+H reaction [format_publication_en] => 169b60c7845c9e5f36906950b18f11111348184734 [jl_article_dt] => 期刊论文 [id] => LQo0vmUBFjIhTVEbSvUX [tags] => 0 ) [9] => Array ( [batch2] => 1,2,6 [batch] => 3250,3243,3241,3254,3252 [tag] => 0 [abstract_cn] => 本文用限制的Hartree—Fock解析梯度方法在3—21G和6—31G~*水平上对环丙基硅烯的重排反应及其机理进行了从头算研究.以6—31G~*优化构型作了二级微扰计算,并计算了各构型的频率.在此基础上得到了重排反应的热焓△H,自由能△G和平衡常数K,用Eyring过渡态理论计算了反应的速度常数k(T),应用Woodward-Hoffmann规则讨论了环丙基硅烯重排反应过程中端基的旋转机理.结果表明,环丙基硅烯经过113.4kJ/mol的势垒扩环重排为硅杂环丁烯为自发反应;而其1,2-氢迁移重排反应势垒为190.0kJ/mol,是非自发反应,难于进行,不能与扩环重排相竞争.另外,扩环重排反应... [keyword_cn] => 环丙基硅烯;重排反应;热力学分析;动力学分析;Woodward-Hoffmann规则 [article_id] => 106124,334866,581851,498333,155186 [clc] => O621 [author_jg] => [冯圣玉,冯大诚,邓从豪]山东大学理论化学研究室,山东大学理论化学研究室,山东大学理论化学研究室 济南250100 山东大学新材料研究所,济南250100,济南250100 [format_title_cn_publication_cn_pub_year] => f28c5863b4cbbd5138afec8bc9944cac2138896864 [hints] => 6 [issue] => 8 [sys_level_num] => 2_3 [sys_jg_type] => 0,5 [format_issn_issue_page_pub_year] => c9b60fd1a621921c88e8f2ed638016a6-1549219556 [source_type] => 351 [pub_year] => 1997 [pub_date] => 1997-08-20 [pages] => 8 [from_id] => 76,80,78,73,85 [author_cn] => 冯圣玉,冯大诚,邓从豪 [issn] => 0567-7351 [uri] => http://kns.cnki.net/kns/detail/detail.aspx?FileName=HXXB199708003&DbName=CJFQ1997 [publication_cn] => 化学学报 [title_cn] => 环丙基硅烯的理论研究 环丙基硅烯C_3H_5SiH的重排反应及其机理 [CSSN] => 31-1320/O6 [SYS_TAG] => 3 [format_title_cn_issn_pub_year] => d947c7da8d71c1948f088181c81e07ce463399432 [page] => 747-754 [hb_type] => 2 [article_dt] => Article [hb_batch] => title_cn_publication_cn_pub_year_2_3 [format_title_en] => 045f44d0883432f0f8064b097e62bafc-546350683 [format_title] => 40086d695df55c60c65fff1e3c3714d11099084226 [hx_id] => 2378,2371 [format_publication_cn] => 6918be3b26b1fa6ec0424f6071208a75331227575 [format_publication_en] => 169b60c7845c9e5f36906950b18f11111348184734 [jl_publication_cn] => 化学学报 [jl_article_dt] => 期刊论文 [jl_keyword_cn] => 重排反应,环丙基硅烯,动力学分析,woodwardhoffmann规则,热力学分析 [jl_clc] => o621 [author_in] => [Feng, S.-Y] Theoretical Chemistry Group, Shandong University, Jinan, 250100, China@@@[ Feng, D.-C] Theoretical Chemistry Group, Shandong University, Jinan, 250100, China@@@[ Deng, C.-H] Theoretical Chemistry Group, Shandong University, Jinan, 250100, China [company_id] => 0,143,16 [sys_subject_sort] => 0,0 [college_parent_id] => 143,16 [company_test] => Array,Array [author_id] => [author_test] => Array ( ) [sys_author_id_arr] => [jl_publication_cn_publication_en] => 化学学报 [jl_keyword_cn_keyword_en] => woodwardhoffmann规则,动力学分析,热力学分析,重排反应,环丙基硅烯 [cite_wos] => 0 [publication_en] => ACTA CHIMICA SINICA [check_3Y] => 0 [language] => Chinese [delivery_No] => XW469 [cauthor_ad] => [Feng, SY]SHANDONG UNIV,THEORET CHEM GRP,JINAN 250100,PEOPLES R CHINA. [author_fn] => Feng, SY; Feng, DC; Deng, CH [format_title_en_issn_pub_year] => bc1ee4b34f668e68b0be1f04df2b43df451490304 [datebase] => Scopus [format_scopus_No] => fc53dd1e5cfcc38f215c5b39d89e3357-480081231 [publication_29] => ACTA CHIM SINICA [end_page] => 754 [abstract_en] => The rearrangement of cycyclopropylsilylene C3H5SiH have been studied by ab initio molecular orbital theory at 3 - 21G and 6 - 31G* levels. Correlation energy corrections were computed with using second - order Moller - Plesset perturbation theory (MP2). The enthalpy Delta H, free energy Delta G, equilibrium constant K, and reaction rate constant k(T) in Eyring transition state theory of cyclopropylsilylene C3H5SiH have also been calculated. The results show that the ring expansion of cyclopropylsilylene C3H5SiH to silacyclobutene is easy to occur with a barrier of 113.4kJ/mol, while the 1,2 - H shift is not competitive to the ring expansion for its muchhigher barrier. The rearrangement is divided into several steps and each step can be explained with Woodward - Hoffmann rule. [publication_type] => J [begin_page] => 747 [author_en] => Feng, SY; Feng, DC; Deng, CH [volume] => 55 [publisher] => ACTA CHIMICA SINICA [get_data] => 2018-08-29 [publication_iso] => Acta Chim. Sin. [format_title_en_publication_en_pub_year] => ef52557657bfd1d45385a6d01a75e5a3-1359505726 [publisher_city] => SHANGHAI [cauthor_order] => 1 [reference_No] => 16 [cite_awos] => 0 [wos_No] => WOS:A1997XW46900004 [format_wos_No] => 0c8b1fb0a787b0bcf72465f2ce283874-633656482 [wos_sub] => Chemistry, Multidisciplinary [research_area] => Chemistry [cauthor_back] => Feng, SY [check_180] => 0 [publisher_ad] => SHANGHAI INST ORGANIC CHEM ACADEMIA SINICA 345 LINGLING LU, SHANGHAI,; PEOPLES R CHINA [standard_in] => Theoretical Chemistry Group, Shandong University, Jinan, 250100, China [scopus_No] => 2-s2.0-33748614837 [title_en] => Theoretical studies of cyclopropylsilylenes - The rearrangement of cyclopropylsilylene C3H5SiH [jl_language] => chinese [jl_publication_en] => actachimicasinica [sys_author_jg_last_arr] => 济南250100 [jl_company_test] => unameuu6750u6599u79d1u5b66u4e0eu5de5u7a0bu5b66u9662,uircu0,ulevelu1,uparentidu16,uorgidu16 [jl_country] => 中国 [sys_author_in_last_arr] => china [jl_publisher] => actachimicasinica [sys_author_id] => [id] => qA5IvmUBFjIhTVEbRWIm [tags] => 0 ) [10] => Array ( [batch2] => 1,2 [batch] => 3250,3241,3252 [tag] => 0 [CSSN] => 31-1320/O6 [keyword_cn] => 悬汞电极;NH_3/NH_4Cl;配合物;Co;循环伏安图;峰电流;线性扫描伏安法;极谱图;DMG;还原峰;富集时间;氧化峰;中间产物; [article_id] => 336828,581839,155318 [abstract_cn] => 氨性底液中钴(Ⅱ)-丁二肟体系[Co(Ⅱ)-DMG]在汞电极上有一灵敏的还原峰.等解释此峰是Co(Ⅱ)和DMG的配合物Co(II)A_2作催化剂的氢催化波.Nurnberg等认为所述实验条件下氢的超电势降低这么多是值得怀疑的.最近Weinzierl等提出此峰是Co~(2+)催化了DMG的还原.这些作者均未对判断机理的重要论据(最终产物和中间产物)进行过研究.我们对此体系[0.1mol·dm~(-3)NH_3/NH_4Cl,1×10~(-4)mol·dm~(-3)DMG,Co(Ⅱ)]在悬汞电极(HMDE)上反应的反应物、中间产物、最终产物、可逆性及动力学参数进行了详细的研究.得出的机理与... [author_jg] => [金文睿;刘坤]山东大学化学系,山东大学化学系 济南,济南 青岛医学院化学教研室 [format_title_cn_publication_cn_pub_year] => 7fa28b3e27099eb95870202dedb9fd301942031201 [hints] => 20 [issue] => 7 [sys_level_num] => 2_3 [sys_jg_type] => 5 [format_issn_issue_page_pub_year] => 48d7b1dc78e95291ea85f2bcd142565e-860695305 [source_type] => 351 [pub_year] => 1986 [pub_date] => 1986-07-30 [pages] => 3 [from_id] => 80,73,78 [author_cn] => 金文睿;刘坤; [issn] => 0567-7351 [uri] => http://kns.cnki.net/kns/detail/detail.aspx?FileName=HXXB198607023&DbName=CJFQ1986 [publication_cn] => 化学学报 [title_cn] => NH_3/NH_4Cl中钴(Ⅱ)-丁二肟体系在悬汞电极上电化学还原机理的研究 [SYS_TAG] => 3 [format_title_cn_issn_pub_year] => cb85c547acf8ed0246df73782c0672a5-104867923 [page] => 750-752 [hb_type] => 2 [article_dt] => Article [jl_publication_cn] => 化学学报 [jl_article_dt] => 期刊论文 [jl_keyword_cn] => nh3nh4cl,,co,极谱图,dmg,氧化峰,配合物,线性扫描伏安法,中间产物,还原峰,悬汞电极,循环伏安图,富集时间,峰电流 [author_in] => [company_id] => 0,43,169 [author_id] => 22332 [author_test] => Array ( [0] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 2 [name] => 刘坤 [irtag] => 7 [t_index] => 0 [person_id] => 22332 ) ) [sys_author_id_arr] => [jl_publication_cn_publication_en] => 化学学报 [sys_author_id] => [hb_batch] => grant_no [publication_en] => ACTA CHIMICA SINICA [cite_wos] => 0 [check_3Y] => 0 [language] => Chinese [delivery_No] => D9734 [format_title] => 47ddc312d85cd0cabf68a27bc7ae437a-1550806377 [cauthor_ad] => [JIN, WR]SHANDONG UNIV,DEPT CHEM,JINAN,PEOPLES R CHINA. [author_fn] => JIN, WR; LIU, K [format_title_en_issn_pub_year] => 8c5687b72f0e4f4d18b612c27b41b8d8490302507 [end_page] => 752 [publication_29] => ACTA CHIM SINICA [publication_type] => J [begin_page] => 750 [author_en] => JIN, WR; LIU, K [volume] => 44 [get_data] => 2018-08-29 [publisher] => ACTA CHIMICA SINICA [format_publication_cn] => 6918be3b26b1fa6ec0424f6071208a75331227575 [publication_iso] => Acta Chim. Sin. [format_title_en_publication_en_pub_year] => dc02cbb8f69b5256ed3cb26844868018409595292 [format_title_en] => fa78ab059d2dfff60b179dac1c43ba941410115458 [publisher_city] => SHANGHAI [cauthor_order] => 1 [hx_id] => 2371 [reference_No] => 5 [cite_awos] => 0 [wos_No] => WOS:A1986D973400024 [format_wos_No] => ddf5694c912493f2449c1aaa6b1dd28c-103983078 [wos_sub] => Chemistry, Multidisciplinary [research_area] => Chemistry [cauthor_back] => JIN, WR [check_180] => 0 [publisher_ad] => SHANGHAI INST ORGANIC CHEM ACADEMIA SINICA 345 LINGLING LU, SHANGHAI,; PEOPLES R CHINA [title_en] => A STUDY ON MECHANISM OF THE ELECTROCHEMICAL REDUCTION OF CO(II)-DIMETHYLGLYOXIME SYSTEM AT HANGING MERCURY DROP ELECTRODE IN NH3/NH4CL [format_publication_en] => 169b60c7845c9e5f36906950b18f11111348184734 [sys_subject_sort] => 0,0 [college_parent_id] => 43,169 [company_test] => Array,Array [id] => nA5IvmUBFjIhTVEbRWIm [tags] => 0 ) [11] => Array ( [issn] => 0567-7351 [delivery_No] => KA500 [batch2] => 1,2 [hb_batch] => 3241 [tag] => 0 [author_en] => SUN, SX; GAO, ZL; SHEN, JL; CHAI, JL [abstract_en] => The kinetics and mechanism of the extraction of gold(III) by primaryamine N1923 or triphenylphosphine oxide (TPPO) in chloroform from hydrochloric acid have been studied in a stirred Lewis\' cell. The experimental results showed that the chemical reactions at the interface are rate-determining steps. The rate constants and activation energies of the reactions were calculated. [publication_type] => J [author_in] => [SUN, SX; GAO, ZL; SHEN, JL; CHAI, JL]SHANDONG NORMAL UNIV,DEPT CHEM,JINAN 250014,PEOPLES R CHINA. [publisher_city] => SHANGHAI [article_id] => 336508,554927,167933 [get_data] => 2018-08-29 [format_title_en_publication_en_pub_year] => 8e91a8811a4e1da508cb19ddda24f541-83957884 [pages] => 6 [cite_wos] => 0 [check_3Y] => 0 [cite_awos] => 0 [from_id] => 80,73,78 [cauthor_ad] => [SUN, SX]SHANDONG UNIV,DEPT CHEM,JINAN 250100,PEOPLES R CHINA. [school_id] => 117 [cauthor_order] => 1 [research_area] => Chemistry [sys_level_num] => 1_7 [publisher] => ACTA CHIMICA SINICA [sys_jg_type] => 0,5 [format_issn_issue_page_pub_year] => 2e926cf835df4e094c567ac7bb92ba2e1841414257 [title_en] => THE EXTRACTION KINETICS OF GOLD(III) BY PRIMARYAMINE N1923 AND TRIPHENYLPHOSPHINE OXIDE .1. THE EXTRACTION OF AUCL4- IN A SYSTEM OF SINGLE EXTRACTANT [publication_29] => ACTA CHIM SINICA [author_fn] => SUN, SX; GAO, ZL; SHEN, JL; CHAI, JL [pub_year] => 1992 [publisher_ad] => SHANGHAI INST ORGANIC CHEM ACADEMIA SINICA 345 LINGLING LU, SHANGHAI,; PEOPLES R CHINA [check_180] => 0 [end_page] => 994 [cauthor_back] => SUN, SX [begin_page] => 989 [format_wos_No] => 90f7402a3c5b2d6c1c85bc01162c0b1d774641464 [hints] => 11 [volume] => 50 [language] => Chinese [source_type] => 351 [issue] => 10 [reference_No] => 1 [batch] => 3250,3241,3252 [publication_en] => ACTA CHIMICA SINICA [hx_id] => 2371 [sys_update_time] => 2018-09-05 15:29:33 [format_title_en_issn_pub_year] => a5e5bf4f5de61141c5c837bc40e10175-916195429 [publication_iso] => Acta Chim. Sin. [wos_sub] => Chemistry, Multidisciplinary [SYS_TAG] => 3 [wos_No] => WOS:A1992KA50000010 [page] => 989-994 [hb_type] => 2 [article_dt] => Article [jl_language] => chinese [jl_publication_en] => actachimicasinica [jl_article_dt] => 期刊论文 [jl_country] => 中国,中国 [jl_publisher] => actachimicasinica [author_jg] => [孙思修;高自立;沈静兰;柴金岭]山东大学化学系,山东大学化学系,山东大学化学系,山东师范大学化学系 济南 250100,济南 250100,济南 250100,济南 250014 [keyword_cn] => 金;溶剂萃取;动力学;伯胺N1923;三苯基氧化膦 [format_title] => f958efa7bde4bef41ea50269bc859c12-837879095 [title_cn] => 伯胺N1923和三苯基氧化膦萃取金(Ⅲ)的动力学 Ⅰ.一元萃取剂体系萃取AuCl_4~- [format_publication_cn] => 6918be3b26b1fa6ec0424f6071208a75331227575 [publication_cn] => 化学学报 [format_title_en] => 14314e6652d792d415e335101f65478f-1964753623 [CSSN] => 31-1320/O6 [abstract_cn] => 研究了伯胺N1923和三苯基氧化膦(TPPO)两个一元萃取剂体系从盐酸介质中萃取AuCl_4~-的动力学.认为两体系的萃取速率均受界面化学反应控制;得到298K时两体系萃取反应的速率常数;计算出萃取反应的活化能. [sys_priority_field] => 73 [author_cn] => 孙思修;高自立;沈静兰;柴金岭; [uri] => http://kns.cnki.net/kns/detail/detail.aspx?FileName=HXXB199210009&DbName=CJFQ1992 [format_publication_en] => 169b60c7845c9e5f36906950b18f11111348184734 [jl_publication_cn] => 化学学报 [jl_keyword_cn] => 伯胺n1923,三苯基氧化膦,动力学,溶剂萃取,金 [company_id] => 43,169 [sys_subject_sort] => 0,0 [college_parent_id] => 43,169 [company_test] => Array,Array [author_id] => [author_test] => Array ( ) [sys_author_id_arr] => [jl_publication_cn_publication_en] => actachimicasinica,化学学报 [jl_keyword_cn_keyword_en] => 金,三苯基氧化膦,动力学,溶剂萃取,伯胺n1923 [sys_author_id] => [format_title_cn_publication_cn_pub_year] => 3aafc05be41a32cfe6cc8c91322688891868461500 [format_title_cn_issn_pub_year] => 6e0ff19a6ca0f7bbce1c2031de6c530e-1428553165 [id] => 6wifvWUBFjIhTVEbIto4 [tags] => 0 ) [12] => Array ( [batch2] => 8,2,7 [batch] => 3250,3254,3287,3285,3278,3280 [tag] => 0 [CSSN] => 31-1320/O6 [keyword_cn] => 饱和开链醚; 末端炔; 交叉脱氢偶联; 碳正离子 [article_id] => 721879,730185,726986,724397,528008,99830 [abstract_cn] => 首次报道了饱和开链醚和末端炔的交叉脱氢偶联.在Ph_3CCl/GaCl_3介导的温和氧化条件下,饱和开链醚与一系列芳基和烷基末端炔在室温可发生交; 叉脱氢偶联,反应收率高达73%.鉴于烷基乙炔反应效率较低的问题,还报道了Ph_3CCl/GaCl_3介导的饱和开链醚和一系列烷基取代的炔基硼试剂; 的氧化偶联,并获得了较好的反应收率. [author_jg] => [关弘浩]山东大学药学院, 济南, 山东 250012, 中国@@@[陈磊]山东大学化学与化工学院, 济南, 山东 250100, 中国@@@[刘磊]山东大学药学院;;山东大学化学与化工学院, ;;, 济南;;济南, ;; 250012;;250100. [format_title_cn_publication_cn_pub_year] => 21d38b80431319226466404936b030c6 [hints] => 61 [issue] => 6 [sys_level_num] => 2_3 [sys_jg_type] => 11,3 [format_issn_issue_page_pub_year] => 2415c90cec632ab4fb89442636db4ce9 [source_type] => 351 [pub_year] => 2018 [pub_date] => JUN 15 [pages] => 5 [from_id] => 76,75,73,80,78,85 [author_cn] => 关弘浩; 陈磊; 刘磊 [issn] => 0567-7351 [uri] => https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054391107&doi=10.6023%2fA18030083&partnerID=40&md5=92456fbc0440c81834b3bbf9f18b6e07 [publication_cn] => 化学学报 [title_cn] => 饱和开链醚的氧化碳氢炔基化研究 [SYS_TAG] => 3 [format_title_cn_issn_pub_year] => 37bf21aae2387bbbf41bfb63b171fbf2 [page] => 440-444 [hb_type] => 2 [article_dt] => Article [hb_batch] => title_cn_publication_cn_pub_year_2_3 [format_title_en] => 75b846ec62d6e875174cd154a110a3351181464840 [format_title] => 9d745ba3e081f4cfd0581826020ee95d221516723 [hx_id] => 2377,2378,2371 [format_publication_cn] => 6918be3b26b1fa6ec0424f6071208a75331227575 [format_publication_en] => 169b60c7845c9e5f36906950b18f11111348184734 [jl_publication_cn] => 化学学报 [jl_article_dt] => 期刊论文 [jl_keyword_cn] => 交叉脱氢偶联,碳正离子,饱和开链醚,末端炔 [author_in] => [Guan Honghao; Liu Lei] Shandong Univ, Sch Pharmaceut Sci, Jinan 250012, Shandong, Peoples R China.@@@ [Chen Lei; Liu Lei] Shandong Univ, Sch Chem & Chem Engn, Jinan 250100, Shandong, Peoples R China. [author_id] => 22333 [author_test] => Array ( [0] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 0 [name] => 刘磊 [irtag] => 2 [t_index] => 0 [person_id] => 22333 ) ) [company_id] => 174,43,48,169 [sys_subject_sort] => 0,0,0,0 [college_parent_id] => 174,43,48,169 [company_test] => Array,Array,Array,Array [sys_author_id_arr] => 22333刘磊 [jl_publication_cn_publication_en] => 化学学报,actachimicasinica [jl_keyword_cn_keyword_en] => 交叉脱氢偶联,碳正离子,饱和开链醚,末端炔 [sys_author_id] => 22333 [publication_en] => ACTA CHIMICA SINICA [language] => Chinese [format_title_en_issn_pub_year] => 4d5d54c05cfa4634d7b115226ff1857d [author_en] => Guan, HH; Chen, L; Liu, L [format_title_en_publication_en_pub_year] => 31880f141bf6f7e4b1d9d03c0f4fe87e [title_en] => Oxidative C-H Alkynylation of Unactivated Acyclic Ethers [cite_wos] => 0 [fund_No] => National Natural Science Foundation of China [21722204, 21472112]; Fok; Ying Tung Education Foundation [151035] [check_3Y] => 6 [delivery_No] => GR2MW [cauthor_ad] => [Liu, L]Shandong Univ, Sch Pharmaceut Sci, Jinan 250012, Shandong, Peoples R China@@@[Liu, L]Shandong Univ, Sch Chem & Chem Engn, Jinan 250100, Shandong, Peoples R China. [author_fn] => Guan Honghao; Chen Lei; Liu Lei [publication_29] => ACTA CHIM SINICA [open_type] => Bronze [end_page] => 444 [abstract_en] => C-C bond forming reactions through cross-dehydrogenative coupling (CDC) of two readily available C-H components under oxidative conditions have emerged as one of the most straightforward and economical approaches for increasing molecular complexity and functional group content with minimal waste generation. CDC reactions involving oxidative functionalization of sp(3) C-H bonds of both cyclic and acyclic amines with diverse partners have been extensively explored. In sharp contrast, the CDC of corresponding ether substrates remains relatively underdeveloped. Current approaches predominantly focus on cyclic ethers as well as acyclic benzylic ethers. The CDC reaction of extensively existing unactivated acyclic ethers proved to be much more challenging, which might be ascribed to their inherent low reactivity. On the other hand, the existing protocols for unactivated ethers rely heavily on peroxide-mediated oxidation systems, which typically required high temperature and a large excess of ether substrates as the solvent. Accordingly, coupling partners that can be compatible with such harsh conditions are largely restricted to sp(2) or sp(3) C-H reagents with relatively low manipulation capability, such as arenes, heteroarenes, and 1,3-dicarbonyl moieties. Alkynes represent common structural motifs spread across the fields of biology, chemistry, material science, and medicine, and act as global handles for diverse functionalities. Therefore, the development of a mild approach for CDC of unactivated acyclic ethers with terminal alkynes is highly desired. In 2014, our group developed a mild Ph3CCl/GaCl3 mediated oxidation system, allowing to achieve the oxidative C-H alkynylation of tetrahydrofuran with organoboranes. Herein, we reported the first CDC of unactivated acyclic ethers with terminal alkynes promoted by Ph3CCl/GaCl3. The reaction proceeded at room temperature in CH2Cl2, thus avoiding the employment of excess ether as the solvent. The typical procedure is as follows: a mixture of unactivated acyclic ether (2.0 mmol), terminal alkyne (0.1 mmol), Ph3CCl (0.1 mmol), and CuI (0.03 mmol) in CH2Cl2 at r.t. was added GaCl3 (0.1 mmol) in a glove box to afford the expected coupling products in moderate to good yields. The Ph3CCl/GaCl3 mediated oxidative C-H alkynylation of unactivated acyclic ethers with alkyl substituted alkynylboranes was further established to overcome the relative low efficiency for the CDC reaction involving alkyl substituted terminal alkynes. [publication_type] => J [begin_page] => 440 [volume] => 76 [publisher] => SCIENCE PRESS [get_data] => 2019-01-07 [keyword_en] => acyclic ether; unactivated ether; terminal alkyne; cross-dehydrogenative; coupling; carbocation [keyword_plu] => DEHYDROGENATIVE COUPLING REACTIONS; STRUCTURALLY DIVERSE ETHERS; TERTIARY-AMINES; VISIBLE-LIGHT; DIRECT FUNCTIONALIZATION; C(SP(3))-H BONDS; CARBONYL-COMPOUNDS; TERMINAL ALKYNES; BENZYLIC ETHERS; CROSS-COUPLINGS [doi] => 10.6023/A18030083 [publication_iso] => Acta Chim. Sin. [fund_ab] => Project supported by the National Natural Science Foundation of China; (Nos. 21722204, 21472112) and Fok Ying Tung Education Foundation (No.; 151035). [publisher_city] => BEIJING [cauthor_order] => 3,3 [email] => leiliu@sdu.edu.cn [reference_No] => 76 [cite_awos] => 0 [wos_No] => WOS:000442409600003 [sys_priority_field] => 73 [format_wos_No] => 8ba6973e5dfc83a430ce84911e2eeeea [wos_sub] => Chemistry, Multidisciplinary [research_area] => Chemistry [cauthor_back] => Liu, L@@@Liu, L [check_180] => 6 [publisher_ad] => 16 DONGHUANGCHENGGEN NORTH ST, BEIJING 100717, PEOPLES R CHINA [cauthor] => Liu, L(leiliu@sdu.edu.cn) [datebase] => Scopus [scopus_id] => 57203482464;57195758825;36773132700; [format_scopus_No] => 7b33ab55577605bbfdd63dc633a28114 [scopus_No] => 2-s2.0-85054391107 [standard_in] => School of Pharmaceutical Science, Shandong University, Jinan, 250012, China; School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China [jl_language] => chinese [jl_author_test] => usureu1,uirtagu2,uirtypicalu,uirtstagu,unameuu5218u78ca,upersonidu22333,uuindexu3,uirauthortypeu,uirinspecttagu,utindexu3 [jl_publication_en] => actachimicasinica [sys_author_jg_last_arr] => 中国,250012250100 [jl_company_test] => uparentidu48,uparentidu43,uircu0,uorgidu43,ulevelu1,unameuu836fu5b66u9662,unameuu5316u5b66u4e0eu5316u5de5u5b66u9662,uorgidu48 [jl_country] => 纳米比亚,瑞士,印度,苏里南,中国,西班牙,波兰,秘鲁 [jl_keyword_en] => crossdehydrogenative,coupling,carbocation,acyclicether,terminalalkyne,unactivatedether [sys_author_in_last_arr] => peoplesrchina [jl_publisher] => sciencepress [format_cscd_No] => b6bef4ab9e6c86dbf9e324eedc00127f [cite_cscd] => 0 [publication_info] => 0567-7351(2018)76:6<440:BHKLMD>2.0.TX;2-C [email_c] => leiliu@sdu.edu.cn [cscd_No] => CSCD:6266142 [jl_pub_year] => 2018 [id] => Jg9KvmUBFjIhTVEb9jac [tags] => 0 ) [13] => Array ( [batch2] => 1,2,6 [batch] => 3249,3250,3252,3254,3243,3241 [tag] => 0 [abstract_cn] => 恒剪切速率(DL)实验发现Mg-Al类水滑石(HTlc)/高岭土(kaolinite)分散体系中存在流变震荡现象,即粘度随时间发生周期性升高和降低的变化.研究了HTlc/kaolinite分散体系的质量比(R)、剪切速率、pH、无机盐及聚合物等因素对振荡现象的影响,发现较高的DL与无机盐含量均可使震荡现象消失.pH值及聚合物不影响振荡周期,但会改变振荡振幅.对实验结果的机理进行了探讨. [keyword_cn] => 流变振荡现象;类水滑石化合物;高岭土;分散体系;粘度 [article_id] => 183217,119970,378270,597938,666775,466622 [clc] => O629.7 [author_jg] => [戴肖南] 山东轻工业学院化学工程学院, 济南, 山东 250100, 中国.@@@[赵超] 山东轻工业学院化学工程学院, 济南, 山东 250100, 中国.@@@[侯万国] 山东大学, 胶体与界面化学教育部重点实验室, 济南, 山东 250100, 中国 [format_title_cn_publication_cn_pub_year] => 9252184d7a2c422c4748ca17ec03cd491308747591 [hints] => 42 [issue] => 2 [sys_level_num] => 2_3 [sys_jg_type] => 11,5 [format_issn_issue_page_pub_year] => 1856cc2ac3f21276f489ab357f7e8782-85580192 [source_type] => 351 [pub_year] => 2011 [pub_date] => JAN 28 [pages] => 4 [from_id] => 76,75,73,80,78,85 [author_cn] => 戴肖南;侯万国;赵超; [issn] => 0567-7351 [uri] => https://www.scopus.com/inward/record.uri?eid=2-s2.0-84880998760&partnerID=40&md5=b1622c2c28e3f0a6152163a991600889 [publication_cn] => 化学学报 [title_cn] => Mg-Al类水滑石/高岭土分散体系流变振荡现象研究 [CSSN] => 31-1320/O6 [SYS_TAG] => 3 [format_title_cn_issn_pub_year] => 7b064aea825bdf1bdb06b14fdb5352931475280324 [page] => 153-156 [hb_type] => 2 [article_dt] => Article [hb_batch] => title_cn_publication_cn_pub_year_2_3 [publication_en] => ACTA CHIMICA SINICA [cite_wos] => 0 [fund_No] => 山东省中青年科学家科研奖励基金 [check_3Y] => 9 [language] => Chinese [delivery_No] => 728XM [format_title] => 95195b0d9f88f82341b3856064db7510-179139243 [cauthor_ad] => [Dai, XN]Shandong Inst Light Ind, Dept Chem Engn, Jinan 250100, Peoples R China. [author_fn] => Dai Xiaonan; Hou Wanguo; Zhao Chao [reference] => Abend S, 1998, COLLOID POLYM SCI, V276, P730, DOI 10.1007/s003960050303@@@Albiston L, 1996, J MATER CHEM, V6, P871, DOI 10.1039/jm9960600871@@@CONSTANTINO U, 1997, SOLID STATE IONICS, V97, P203@@@CONSTANTINO VRL, 1995, J INORG CHEM, V34, P883@@@[戴肖南 Dai Xiaonan], 2005, [化学学报, Acta Chemical Sinica], V63, P693@@@DAI XN, 2001, SCI CHINA SER B, V44, P438@@@HERRINGTON TM, 1992, COLLOID SURFACE, V68, P161, DOI@@@10.1016/0166-6622(92)80200-L@@@Li SP, 2003, LANGMUIR, V19, P3172, DOI 10.1021/la026669w@@@QUEMADA D, 1998, EUR PHYS J, V4, P19@@@Seidel O, 1999, RHEOL ACTA, V38, P305, DOI 10.1007/s003970050182 [publication_29] => ACTA CHIM SINICA [end_page] => 156 [abstract_en] => The rheological fluctuation behavior of apparent viscosity eta with t was found in Mg-Al-Hydrotalcite-like compound/kaolinite (Mg-Al-HTlc/kaolinite for short) suspensions by steady shear experiment, and the influence of mass ratio of HTle to kaolinite (R), steady shear rate (D(L)), pH, electrolytes and polymers was investigated. It was found that the fluctuation behavior would disappear when D(L) and the concentration of electrolytes were relatively high. The pH value and polymers would change the amplitude of the fluctuation behavior. The results were discussed on the basis of the interactions between the HTlc and kaolinite particles. [author_in] => [Dai, X] Department of Chemical Engineering, Shandong Institute of Light Industry, Jinan 250100, China@@@[ Hou, W] Key Laboratory for Colloid and Interface Chemistry of Education Ministry, Shandong University, Jinan 250100, China@@@[ Zhao, C] Department of Chemical Engineering, Shandong Institute of Light Industry, Jinan 250100, China [publication_type] => J [begin_page] => 153 [author_en] => Dai, XN; Hou, WG; Zhao, C [volume] => 69 [get_data] => 2018-08-29 [publisher] => SCIENCE CHINA PRESS [keyword_en] => fluctuation behavior; hydrotalcite-like compound; kaolinite; suspension;; viscosity [format_publication_cn] => 6918be3b26b1fa6ec0424f6071208a75331227575 [keyword_plu] => LAYERED DOUBLE HYDROXIDES; KAOLIN [publication_iso] => Acta Chim. Sin. [format_title_en] => 6fec439186b90ea08bf4ced244e771a31691489193 [publisher_city] => BEIJING [hx_id] => 2377,2378,2371 [reference_No] => 10 [email] => sddxn@163.com [cite_awos] => 0 [wos_No] => WOS:000287907800007 [wos_sub] => Chemistry, Multidisciplinary [research_area] => Chemistry [check_180] => 1 [publisher_ad] => 16 DONGHUANGCHENGGEN NORTH ST, BEIJING 100717, PEOPLES R CHINA [title_en] => Study on the Rheological Fluctuation Behavior of Mg-Al-Hydrotalcite-like Compound/Kaolinite Suspensions [format_publication_en] => 169b60c7845c9e5f36906950b18f11111348184734 [jl_language] => chinese [jl_publication_cn] => 化学学报 [jl_article_dt] => 期刊论文 [jl_publication_en] => actachimicasinica [jl_country] => 中国,中国 [jl_keyword_en] => ,fluctuationbehavior,hydrotalcitelikecompound,viscosity,kaolinite,suspension [jl_keyword_cn] => 类水滑石化合物,高岭土,流变振荡现象,粘度,分散体系 [jl_clc] => o6297 [jl_publisher] => sciencechinapress [company_id] => 0,0,0,0,0 [author_id] => 21153 [author_test] => Array ( [0] => Array ( [sure] => 1 [irmagnum] => 0 [u_index] => 2 [name] => 侯万国 [sys_author_id] => Array ( [0] => 21153 ) [irtag] => 0 [t_index] => 0 [person_id] => 21153 ) ) [sys_author_id_arr] => 21153侯万国 [cscd_No] => CSCD:4133427 [jl_publication_cn_publication_en] => actachimicasinica,化学学报 [jl_keyword_cn_keyword_en] => 类水滑石化合物,流变振荡现象,hydrotalcitelikecompound,viscosity,粘度,fluctuationbehavior,kaolinite,高岭土,suspension,分散体系 [sys_author_id] => 21153 [format_cscd_No] => 3cbb2ec53b5653a5a0cb17982f1b26a41866076172 [format_title_en_publication_en_pub_year] => 5b8aa429d28591216ae28093a6b8eb202137674957 [format_wos_No] => 0d44e11b01b1b79a06082961d4f56828471903291 [format_title_en_issn_pub_year] => 6bc8991afaf118333d19a395dd189790-1495016577 [cauthor] => Dai, X(sddxn@163.com) [datebase] => Scopus [format_scopus_No] => 61e32e7d1efa1d6d8eb0b1c1d909f326-86384126 [sys_priority_field] => 76 [standard_in] => Department of Chemical Engineering, Shandong Institute of Light Industry, Jinan 250100, China; Key Laboratory for Colloid and Interface Chemistry of Education Ministry, Shandong University, Jinan 250100, China [scopus_No] => 2-s2.0-84880998760 [id] => Xg5HvmUBFjIhTVEbZySy [tags] => 0 ) [14] => Array ( [issn] => 0567-7351 [reference] => Bird R B, 2002, Transport Phenomena, Vol. 2. Chapter 5.5@@@Bowen WR, 1997, J MEMBRANE SCI, V126, P91, DOI@@@10.1016/S0376-7388(96)00276-1@@@Bowen WR, 1996, J MEMBRANE SCI, V112, P263, DOI@@@10.1016/0376-7388(95)00302-9@@@DEEN WM, 1987, AICHE J, V33, P1409, DOI 10.1002/aic.690330902@@@Deon S, 2007, AICHE J, V53, P1952, DOI 10.1002/aic.11207@@@Deon S, 2007, IND ENG CHEM RES, V46, P6752, DOI 10.1021/ie061687k@@@Escoda A, 2011, J MEMBRANE SCI, V378, P214, DOI@@@10.1016/j.memsci.2011.05.004@@@[付升 FU Sheng], 2006, [化学学报, Acta Chemical Sinica], V64, P2241@@@Gozalvez-Zafrilla JM, 2010, DESALINATION, V250, P840, DOI@@@10.1016/j.desal.2008.11.053@@@[侯立安 Hou Lian], 2010, [膜科学与技术, Membrane Science and Technology], V30, P1@@@Schaep J, 1999, SEPAR SCI TECHNOL, V34, P3009, DOI 10.1081/SS-100100819@@@Vezzani D, 2002, DESALINATION, V149, P477, DOI@@@10.1016/S0011-9164(02)00784-1@@@@@@[王晓琳 WANG Xiaolin], 2011, [膜科学与技术, Membrane Science and Technology],@@@V31, P127@@@徐又一, 2005, 高分子膜材料 [batch2] => 1,2,6 [format_cscd_No] => a50f4dedabba9b8d8f481ae8d9579a6f-1471110120 [begin_page] => 1511 [tag] => 0 [research_area] => Chemistry [publication_info] => 0567-7351(2013)71:11<1511:GFZMXL>2.0.TX;2-L [abstract_en] => The application of nanofiltration in industrial fields is increasing rapidly in recent years, especially in drinking water treatment. Nevertheless, the mechanism of mass transport through these membranes has not yet been fully understood. And the optimal design of nanofiltration processes still faces challenges. At first, the Donnan Steric Pore Model (DSPM) is described in this paper, which is constructed on the basis of the extended Nernst-Planck equation for the prediction of the nanofiltration process of polymeric membrane. Then the DSPM model is used to characterize three kinds of membranes (AFC40, CA30 and NTR7450) for the nanofiltration of 50 mol/m(3) NaCl solution and NTR7450 membrane for the nanofiltration of NaCl and MgSO4 solution with different concentrations. The simulated results and their comparison with experimental results show that the DSPM model can effectively predict the membrane performance. And then a description of the Pores and Polarization Transport Model (PPTM) is presented, which is developed on the basis of the DSPM model, in order for characterizing cross-flow nanofiltration. The PPTM model combines the convection-diffusion-migration transport in the nanopores with the transport through the concentration polarization layer. To improve the PPTM model in the aspect of using an empirical model to describe the velocity field of solution above the membrane, the velocity profile in solution is solved by Navier-Stokes equation and continuity equation in this paper. The cross-flow nanofiltration of polymeric membrane is simulated using the finite element method, by coupling mass transfer in the membrane with ion concentration and velocity profile in solution above the membrane. By the comparison with experimental results and traditional PPTM results, it can be found that the modified method can reflect the change tendencies of ion concentration and velocity profile in solution, and their values are more in line with the values of experiments. The improved model can provide more reliable theoretical basis for the optimal design of cross-flow nanofiltration processes of polymeric membrane. [abstract_cn] => 纳滤膜的应用日益广泛,但其传质机理和优化设计的研究还有待深入.本文首先描述了表征高分子膜纳滤的道南-位阻孔模型(Donnan Steric Pore Model,DSPM),进而描述了在DSPM模型基础上发展起来的表征错流纳滤的孔-极化输运模型(Pores and Polarization Transport Model,PPTM).针对在PPTM模型中用经验模型描述膜上方溶液速度场的不足,用Navier-Stokes方程和连续性方程来描述溶液在膜上方自由空间内的流动,并用有限元方法模拟膜上方的溶液错流速度场,从而实现了膜内传质的DSPM模型、膜上方离子浓度场、膜上方自由空间流场的多场耦合有限... [keyword_cn] => 纳滤膜;;浓差极化;;输运模型;;速度场;;有限元模拟 [fund_No] => National Key Basic Research Program of China [2012CB821500]; Natural; Science Foundation of Shandong Province for Distinguished Young Scholars; [JQ201016] [format_title_en_publication_en_pub_year] => 69683f972b5ae6ed3f7f49c599f02d2f-448095884 [publication_type] => J [author_jg] => [王钊] 山东大学, 材料液固结构演变与加工教育部重点实验室, 济南, 山东 250061, 中国.@@@[贾玉玺] 山东大学, 材料液固结构演变与加工教育部重点实验室, 济南, 山东 250061, 中国.@@@[徐一涵] 山东大学, 材料液固结构演变与加工教育部重点实验室, 济南, 山东 250061, 中国.@@@[石彤非] 中国科学院长春应用化学研究所, 高分子物理与化学国家重点实验室, 长春, 吉林 130022, 中国.@@@[安立佳] 中国科学院长春应用化学研究所, 高分子物理与化学国家重点实验室, 长春, 吉林 130022, 中国 [cite_cscd] => 0 [cite_awos] => 0 [from_id] => 76,75,73,80,78 [issue] => 11 [email] => jia_yuxi@sdu.edu.cn [email_c] => jia_yuxi@sdu.edu.cn [sys_level_num] => 1_1 [format_title_cn_publication_cn_pub_year] => b6b5188654dee497d0b7ba752e19e83f826653757 [sys_jg_type] => 11,5 [format_issn_issue_page_pub_year] => c330f69873b72eecd13ae5e55e97bb911240612194 [title_en] => Finite Element Analysis on Multi-field Coupling of Cross-flow Nanofiltration of Polymeric Membrane [volume] => 71 [author_fn] => Wang Zhao; Jia Yuxi; Xu Yihan; Shi Tongfei; An Lijia [pub_year] => 2013 [check_180] => 2 [keyword_en] => nanofiltration membrane; concentration polarization; transport model;; velocity profile; finite element simulation [end_page] => 1515 [article_id] => 454474,365439,660498,648095,183205 [pages] => 5 [hints] => 47 [author_cn] => 王钊;贾玉玺;徐一涵;石彤非;安立佳; [researcherID] => Shi, Tongfei/O-8777-2016 [language] => Chinese [source_type] => 351 [reference_No] => 13 [cscd_No] => CSCD:4992158 [batch] => 3250,3243,3249,3252,3241 [publication_en] => ACTA CHIMICA SINICA [hx_id] => 2377,2378,2371 [author_in] => [Wang, Z] Key Lab for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China@@@[ Jia, Y] Key Lab for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China@@@[ Xu, Y] Key Lab for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China@@@[ Shi, T] State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China@@@[ An, L] State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China [format_title_en_issn_pub_year] => 2df7338e0ff79579467a85bbf275d839-44148120 [check_3Y] => 41 [publication_cn] => 化学学报 [title_cn] => 高分子膜错流纳滤的多场耦合有限元分析 [SYS_TAG] => 3 [format_title_cn_issn_pub_year] => 1cd98bc8e31e027a88ebb999c26d45db-1118056597 [page] => 1511-1515 [hb_type] => 2 [article_dt] => Article [hb_batch] => issn_issue_page_pub_year_1_7 [cite_wos] => 0 [delivery_No] => 273ZE [format_title] => 416dab4f9e9300adbaa9a3ad1945f139744558649 [cauthor_ad] => [Wang, Z]Shandong Univ, Key Lab Liquid Solid Struct Evolut & Proc Mat, Minist Educ, Jinan 250061, Peoples R China. [publication_29] => ACTA CHIM SINICA [open_type] => gold_or_bronze [author_en] => Wang, Z; Jia, YX; Xu, YH; Shi, TF; An, LJ [get_data] => 2018-08-29 [publisher] => SCIENCE PRESS [format_publication_cn] => 6918be3b26b1fa6ec0424f6071208a75331227575 [keyword_plu] => TRANSPORT; SALTS; PORES; MODEL [doi] => 10.6023/A13070790 [publication_iso] => Acta Chim. Sin. [fund_ab] => Project supported by the National Key Basic Research Program of China; (No. 2012CB821500) and the Natural Science Foundation of Shandong; Province for Distinguished Young Scholars (No. JQ201016). [format_title_en] => 5b7f6b69b46ef4a98d1afbf78ed43bfb-1838647027 [publisher_city] => BEIJING [pub_date] => NOV 14 [wos_No] => WOS:000328574000008 [sys_priority_field] => 76 [wos_sub] => Chemistry, Multidisciplinary [publisher_ad] => 16 DONGHUANGCHENGGEN NORTH ST, BEIJING 100717, PEOPLES R CHINA [format_publication_en] => 169b60c7845c9e5f36906950b18f11111348184734 [jl_language] => chinese [jl_publication_cn] => 化学学报 [jl_article_dt] => 期刊论文 [jl_publication_en] => actachimicasinica [jl_country] => 中国 [jl_keyword_en] => ,concentrationpolarization,finiteelementsimulation,transportmodel,nanofiltrationmembrane,velocityprofile [jl_keyword_cn] => ,输运模型,纳滤膜,浓差极化,有限元模拟,速度场 [jl_publisher] => sciencepress [clc] => O621.25 [CSSN] => 31-1320/O6 [author_first] => 王钊; [uri] => https://www.scopus.com/inward/record.uri?eid=2-s2.0-84887748900&doi=10.6023%2fA13070790&partnerID=40&md5=8c07a80e301d699c51ca2691942b5710 [jl_clc] => o62125 [company_id] => 0,0,0,0,0,0,0,0 [author_id] => 21366 [author_test] => Array ( [0] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 2 [name] => 贾玉玺 [irtag] => 9 [t_index] => 0 [person_id] => 21366 ) ) [sys_author_id_arr] => [jl_publication_cn_publication_en] => actachimicasinica,化学学报 [jl_keyword_cn_keyword_en] => 输运模型,concentrationpolarization,nanofiltrationmembrane,纳滤膜,finiteelementsimulation,有限元模拟,transportmodel,速度场,velocityprofile,浓差极化 [format_scopus_No] => 73d0602f20b563e385dd42656fc81f2c-1591675967 [format_wos_No] => c7358fa735abe466d36a46a6bfe3af43903126065 [standard_in] => Key Lab for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China; State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China [cauthor] => Jia, Y(jia_yuxi@sdu.edu.cn) [datebase] => Scopus [scopus_No] => 2-s2.0-84887748900 [jl_author_test] => uirtypical3,uirtstag0,unameuu8d3eu7389u73ba,upersonid21366,uuindex2,usureu0,utindex0,uirinspecttag0,uirauthortype0,uirtag9 [sys_author_jg_last_arr] => 中国,中国,中国,中国,中国 [sys_author_in_last_arr] => china [sys_author_id] => 21366 [id] => _gZ1vWUBFjIhTVEbmY4p [tags] => 0 ) [15] => Array ( [batch2] => 1,2,6 [batch] => 3249,3250,3252,3254,3243,3241 [tag] => 0 [abstract_cn] => 四(4-苯乙烯基)硅烷(TVBS)和溴代二苯乙烯基吡啶(Br-DSP)通过Heck偶联反应构筑以共价键连接的具有pH响应的新型多孔材料.材料具有良好的孔性能和热稳定性能,其比表面积为467 m2·g-1,孔体积为0.41 cm3·g-1.所得的多孔材料在273 K/760 mm Hg条件下的CO2吸附量为2.96 wt%.二苯乙烯基吡啶(DSP)单元的引入,使多孔材料具有优异的荧光性能,其中N原子作为质子化中心,使材料具有pH响应性.在固体状态下,材料的荧光最大发射波长在526nm;在p H=1.00~4.50范围内,材料的荧光最大发射波长和相应的pH值成线性关系,表明该材料可用于酸性溶液的精... [keyword_cn] => 多孔材料;pH响应性;荧光性能;溴代二苯乙烯基吡啶;四(4-苯乙烯基)硅烷 [article_id] => 440348,10979,659046,563071,354717,238466 [clc] => TQ317;TB383.4 [author_jg] => [杨文艳] 山东大学化学与化工学院, 特种功能聚集体材料教育部重点实验室, 济南, 山东 250100, 中国.@@@[刘鸿志] 山东大学化学与化工学院, 特种功能聚集体材料教育部重点实验室;;特种功能高分子材料及相关技术教育部重点实验室, 济南, 山东 250100, 中国 [format_title_cn_publication_cn_pub_year] => ab36b7598720d17c5bea521e71bd5b031724361100 [hints] => 49 [issue] => 6 [sys_level_num] => 2_3 [sys_jg_type] => 5 [format_issn_issue_page_pub_year] => b381e9b21f8224742f32e169633172b3-1401071844 [source_type] => 351 [pub_year] => 2015 [pub_date] => JUN 15 [pages] => 6 [from_id] => 76,75,73,80,78,85 [author_cn] => 杨文艳;刘鸿志; [issn] => 0567-7351 [uri] => https://www.scopus.com/inward/record.uri?eid=2-s2.0-84937548828&doi=10.6023%2fA15010054&partnerID=40&md5=8ea960f44f7f4a391e0e4af292c4a4dc [publication_cn] => 化学学报 [title_cn] => 通过Heck偶联反应制备具有pH响应的吡啶基团功能化的多孔材料 [CSSN] => 31-1320/O6 [SYS_TAG] => 3 [format_title_cn_issn_pub_year] => 72e1b663e91cc9328e890cf8521d01d6-621502168 [page] => 623-628 [hb_type] => 2 [article_dt] => Article [hb_batch] => title_cn_publication_cn_pub_year_2_3 [cite_wos] => 0 [publication_en] => ACTA CHIMICA SINICA [fund_No] => National Natural Science Foundation of China [21274081] [check_3Y] => 54 [language] => Chinese [delivery_No] => CO3YW [format_title] => 02e2729b823dd90c3fe15c5f25da85a9-1842198035 [cauthor_ad] => [Yang, WY]Shandong Univ, Sch Chem & Chem Engn, Minist Educ, Key Lab Special Funct Aggregated Mat, Jinan 250100, Peoples R China. [author_fn] => Yang Wenyan; Liu Hongzhi [reference] => Ben T, 2009, ANGEW CHEM INT EDIT, V48, P9457, DOI 10.1002/anie.200904637@@@Chen L, 2010, J AM CHEM SOC, V132, P6742, DOI 10.1021/ja100327h@@@Chen Q, 2012, J AM CHEM SOC, V134, P6084, DOI 10.1021/ja300438w@@@Chen YC, 2013, J MEMBRANE SCI, V442, P206, DOI@@@10.1016/j.memsci.2013.04.041@@@Feng LJ, 2014, POLYM CHEM-UK, V5, P3081, DOI 10.1039/c3py01430d@@@Grygorovych OV, 2010, J FLUORESC, V20, P115, DOI@@@10.1007/s10895-009-0529-0@@@Holst JR, 2010, MACROMOLECULES, V43, P8531, DOI 10.1021/ma101677t@@@Jiang JX, 2011, CHEM SCI, V2, P1777, DOI 10.1039/c1sc00329a@@@Jiang XS, 2009, J PHOTOPOLYM SCI TEC, V22, P351, DOI@@@10.2494/photopolymer.22.351@@@@@@Kobayashi F, 2012, LWT-FOOD SCI TECHNOL, V48, P330, DOI@@@10.1016/j.lwt.2012.04.011@@@Lindqvist J, 2008, BIOMACROMOLECULES, V9, P2139, DOI 10.1021/bm800193n@@@Liu S, 2013, POLYMER, V54, P3065, DOI 10.1016/j.polymer.2013.04.024@@@Liu XM, 2012, J AM CHEM SOC, V134, P8738, DOI [10.1021/ja303445r,@@@10.1021/ja303448r]@@@McKeown NB, 2006, CHEM SOC REV, V35, P675, DOI 10.1039/b600349d@@@Morris R. E., 2008, ANGEW CHEM INT EDIT, V47, P4699@@@Patra A, 2012, CHEM-EUR J, V18, P10074, DOI 10.1002/chem.201200804@@@Pivovarenko VG, 2003, J FLUORESC, V13, P479, DOI@@@10.1023/B:JOFL.0000008058.34149.df@@@Sengupta P, 2004, INORG CHEM, V43, P1828, DOI 10.1021/ic0352405@@@Soler-illia GJD, 2002, CHEM REV, V102, P4093, DOI 10.1021/cr0200062@@@Wang DX, 2014, RSC ADV, V4, P59877, DOI 10.1039/c4ra11069b@@@Wang DX, 2013, J MATER CHEM A, V1, P13549, DOI 10.1039/c3ta12324c@@@Wang DX, 2013, MACROMOL RAPID COMM, V34, P861, DOI@@@10.1002/marc.201200835@@@[王维 Wang Wei], 2014, [化学学报, Acta Chimica Sinica], V72, P557, DOI@@@10.6023/A14020121@@@Weber J, 2008, J AM CHEM SOC, V130, P6334, DOI 10.1021/ja801691x@@@Wu DC, 2012, CHEM REV, V112, P3959, DOI 10.1021/cr200440z@@@Wu Y, 2014, J MATER CHEM A, V2, P2160, DOI 10.1039/c3ta14746k@@@Xu YH, 2013, CHEM SOC REV, V42, P8012, DOI 10.1039/c3cs60160a@@@Yameen B, 2009, NANO LETT, V9, P2788, DOI 10.1021/nl901403u@@@Yang WY, 2015, RSC ADV, V5, P12800, DOI 10.1039/c4ra13628d@@@Yang WY, 2014, EUR J INORG CHEM, P2976, DOI 10.1002/ejic.201402156@@@Yuan DQ, 2011, ADV MATER, V23, P3723, DOI 10.1002/adma.201101759@@@Zhang H, 2014, MATER RES BULL, V53, P266, DOI@@@10.1016/j.materresbull.2014.01.039@@@Zhao YC, 2012, J MATER CHEM, V22, P11509, DOI 10.1039/c2jm31187a [open_type] => gold_or_bronze [publication_29] => ACTA CHIM SINICA [end_page] => 628 [abstract_en] => A novel covalent-linked pH-responsive porous polymer (CPP) was prepared successfully using the tetrahedron tetrakis(4-vinylbenzyl)silane and brominated distyrylpyridine (Br-DSP) as the building blocks via the Heck coupling reaction. The structure of the resulting material was characterized by FTIR, solid-state Si-29 MAS NMR, C-13 CP/MAS NMR and elemental analysis. The material possessed good porosity, the porosity parameters were evaluated by nitrogen adsorption and desorption measurement, thereinto, pore-size distribution (PSD) was characterized by nonlocal density functional theory (NL-DFT). The Brunauer-Emmett-Tellerspecific surface area of CPP was 467 m(2).g(-1) and total pore volume of 0.41 cm(3).g(-1) by t-plot method, the material also exhibited good CO2 uptake of 2.96 wt% at 273 K/760 mmHg. The powder X-ray diffraction (PXRD), field emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy (HRTEM) measurements were used to investigate the porous polymer. CPP exhibited high thermal stability with decomposition temperature at 462 degrees C (10 wt%) by thermogravimetric analysis (TGA). By the introduction of the conjugated structures of distyrylpyridine groups, the porous polymer showed luminescence with the maximum emission at ca. 526 nm in the solid state. Additionally, CPP exhibited an excellent pH-responsive property due to the protonated nitrogen centers of pyridine groups in the porous structure, a linear relation was established between the maximum luminescent emission wavelengths (lambda(em)) of the porous polymer in buffer solutions and the corresponding pH values in the pH range from 1.00 to 4.50, the correlation coefficient of the straight line was 0.992. Therefore, this porous material can be utilized as an promising fluorescent probe in the rapid test systems. [author_in] => [Yang, W] Key Laboratory of Special Functional Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China@@@[ Liu, H] Key Laboratory of Special Functional Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China, Key Laboratory of Specially Functional Polymeric Materials and Related Technology, Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China [publication_type] => J [begin_page] => 623 [author_en] => Yang, WY; Liu, HZ [volume] => 73 [get_data] => 2018-08-29 [publisher] => SCIENCE PRESS [keyword_en] => porous polymer; pH-responsive; luminescent; brominated distyrylpyridine;; tetrakis(4-vinylbenzyl)silane [format_publication_cn] => 6918be3b26b1fa6ec0424f6071208a75331227575 [keyword_plu] => CONJUGATED MICROPOROUS POLYMERS; HIGH-SURFACE-AREA; AROMATIC FRAMEWORK; DESIGN; NETWORKS; OCTAVINYLSILSESQUIOXANE; POLYMERIZATION; MEMBRANE; SORPTION; STORAGE [doi] => 10.6023/A15010054 [publication_iso] => Acta Chim. Sin. [fund_ab] => Project supported by the National Natural Science Foundation of China; (No. 21274081). [format_title_en] => 5031359b2b6f105769ceeecbcf8702f9847323766 [publisher_city] => BEIJING [hx_id] => 2377,2378,2371 [reference_No] => 33 [email] => liuhongzhi@sdu.edu.cn [cite_awos] => 0 [wos_No] => WOS:000359098200014 [wos_sub] => Chemistry, Multidisciplinary [research_area] => Chemistry [check_180] => 5 [publisher_ad] => 16 DONGHUANGCHENGGEN NORTH ST, BEIJING 100717, PEOPLES R CHINA [title_en] => Preparation of a pH-Responsive Porous Materials Functionalized by Pyridine Groups via the Heck Reaction [format_publication_en] => 169b60c7845c9e5f36906950b18f11111348184734 [jl_language] => chinese [jl_publication_cn] => 化学学报 [jl_article_dt] => 期刊论文 [jl_publication_en] => actachimicasinica [jl_country] => 中国,中国 [jl_keyword_en] => ,tetrakis4vinylbenzylsilane,porouspolymer,brominateddistyrylpyridine,luminescent,phresponsive [jl_keyword_cn] => 四4苯乙烯基硅烷,溴代二苯乙烯基吡啶,荧光性能,多孔材料,ph响应性 [jl_clc] => tb3834,tq317 [jl_publisher] => sciencepress [author_id] => 22265 [author_test] => Array ( [0] => Array ( [sure] => 1 [irmagnum] => 0 [u_index] => 2 [name] => 刘鸿志 [sys_author_id] => Array ( [0] => 22265 ) [irtag] => 0 [t_index] => 0 [person_id] => 22265 ) ) [company_id] => 0,43,169 [sys_subject_sort] => 0,0 [college_parent_id] => 43,169 [company_test] => Array,Array [sys_author_id_arr] => 22265刘鸿志 [cscd_No] => CSCD:5477248 [jl_publication_cn_publication_en] => actachimicasinica,化学学报 [jl_keyword_cn_keyword_en] => 荧光性能,多孔材料,porouspolymer,溴代二苯乙烯基吡啶,tetrakis4vinylbenzylsilane,brominateddistyrylpyridine,luminescent,ph响应性,phresponsive,四4苯乙烯基硅烷 [sys_author_id] => 22265 [format_cscd_No] => b16a8edf35aea395b58b9b53930a1a80554335545 [format_title_en_publication_en_pub_year] => 81c4a42b7e478ca79d7ca913856c15471102568538 [format_wos_No] => 8e50440c758f016b5de98890a7b31bfb922026980 [format_title_en_issn_pub_year] => f2cedae30a7a116939cdd76957b7c05f891888784 [format_scopus_No] => 5200846147a5443d7b3dd760fce1ec33-1680418216 [standard_in] => Key Laboratory of Special Functional Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China; Key Laboratory of Specially Functional Polymeric Materials and Related Technology, Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China [datebase] => Scopus [sys_priority_field] => 76 [scopus_No] => 2-s2.0-84937548828 [id] => 7g5JvmUBFjIhTVEbM6Ue [tags] => 0 ) [16] => Array ( [batch2] => 1,2,6 [batch] => 3249,3250,3252,3254,3243,3241 [tag] => 0 [abstract_cn] => 具有五元环结构的偶氮化合物4,4-二甲基-4,5-二氢-3H-吡咯(N_2C_5H_(10)),与Fe_3(CO)_(12)在甲苯中加热回流反应,生成双铁六羰基配合物Fe2(N_2C_5H_(10))(CO)6(1).反应中N=N双键被还原,配体以(N_2C_5H_(10))2-的形式与FeIFeI配位,形成具有蝶形结构的34e-化合物.研究了在脱羰基试剂Me_3NO存在条件下,1和单齿膦配体PR3反应生成Fe2(N_2C_5H_(10))-(CO)5(PR3)(PR_3=PPh_3,2a;PCy3,2b)单取代配合物.光照条件下,化合物1中的CO配体还可以被双齿膦配体dppe[dppe=1,... [keyword_cn] => [Fe Fe]氢化酶;双铁羰基配合物;膦配体;旋转构型;桥联CO配体 [article_id] => 665768,228254,80576,342512,563072,502687 [clc] => R472 [author_jg] => [李冉] 山东大学化学与化工学院, 济南, 山东 250100, 中国.@@@[徐文元] 山东大学化学与化工学院, 济南, 山东 250100, 中国.@@@[赵巾钦] 山东大学化学与化工学院, 济南, 山东 250100, 中国.@@@[余鑫] 山东大学化学与化工学院, 济南, 山东 250100, 中国.@@@[王文光] 山东大学化学与化工学院, 济南, 山东 250100, 中国.@@@[佟振合] 山东大学化学与化工学院, 济南, 山东 250100, 中国 [format_title_cn_publication_cn_pub_year] => cde79ed5cbe52410462c2584b016555d-1037119239 [hints] => 55 [issue] => 1 [sys_level_num] => 2_3 [sys_jg_type] => 11,5 [format_issn_issue_page_pub_year] => 36804f22b19fc772ac4ad202c6775a42-1307401510 [source_type] => 351 [pub_year] => 2017 [pub_date] => JAN 15 [pages] => 7 [from_id] => 76,75,73,80,78,85 [author_cn] => 李冉;徐文元;赵巾钦;余鑫;王文光;佟振合; [issn] => 0567-7351 [uri] => https://www.scopus.com/inward/record.uri?eid=2-s2.0-85015214284&doi=10.6023%2fA16070364&partnerID=40&md5=de18b8b1bc7a37675e6f3fb5b5ef8168 [publication_cn] => 化学学报 [title_cn] => 基于偶氮桥连的新型双铁羰基配合物:Fe_2(N_2C_5H_(10))(CO)_(6-x)(PR_3)_x的合成及衍生 [CSSN] => 31-1320/O6 [SYS_TAG] => 3 [format_title_cn_issn_pub_year] => b0bc74b187fb0e4026262360091b39ac-37852651 [page] => 92-98 [hb_type] => 2 [article_dt] => Article [hb_batch] => title_cn_publication_cn_pub_year_2_3 [cite_wos] => 0 [publication_en] => ACTA CHIMICA SINICA [fund_No] => National Natural Science Foundation of China [21402107, 91427303]; 1000; Youth Talents Plan; National Undergraduate Training Programs for; Innovation and Entrepreneurship [201510422032] [check_3Y] => 16 [language] => Chinese [delivery_No] => EN4GK [format_title] => 21d0d8eff8639801751c408184e42972785426321 [cauthor_ad] => [Wang, WG]Shandong Univ, Dept Chem & Chem Engn, Jinan 250100, Peoples R China. [author_fn] => Li Ran; Xu Wenyuan; Zhao Jinqin; Yu Xin; Wang Wenguang; Tung Chen-Ho [reference] => Adam FI, 2008, CR CHIM, V11, P890, DOI 10.1016/j.crci.2008.03.003@@@ADAMS MWW, 1987, J BIOL CHEM, V262, P15054@@@Barton BE, 2008, INORG CHEM, V47, P2261, DOI 10.1021/ic800030y@@@Barton BE, 2010, DALTON T, V39, P3011, DOI 10.1039/b910147k@@@Berggren G, 2013, NATURE, V499, P66, DOI 10.1038/nature12239@@@Camara JM, 2012, NAT CHEM, V4, P26, DOI 10.1038/nchem.1180@@@Camara JM, 2011, J AM CHEM SOC, V133, P8098, DOI 10.1021/ja201731q@@@Capon JF, 2009, COORDIN CHEM REV, V253, P1476, DOI@@@10.1016/j.ccr.2008.10.020@@@Capon JF, 2005, ORGANOMETALLICS, V24, P2020, DOI 10.1021/om049132h@@@Carroll ME, 2014, ORGANOMETALLICS, V33, P858, DOI 10.1021/om400752a@@@Carroll ME, 2012, J AM CHEM SOC, V134, P18843, DOI 10.1021/ja309216v@@@Chernev P, 2014, INORG CHEM, V53, P12164, DOI 10.1021/ic502047q@@@Das P, 2004, INORG CHEM, V43, P8203, DOI 10.1021/ic048772@@@De Lacey A L, 2007, Chem. Rev, V107, P4304@@@Dong WB, 2006, CHEM COMMUN, P305, DOI 10.1039/b513270c@@@Eilers G, 2007, CHEM-EUR J, V13, P7075, DOI 10.1002/chem.200700019@@@Ezzaher S, 2009, INORG CHEM, V48, P2, DOI 10.1021/ic801369u@@@Fontecilla-Camps JC, 2007, CHEM REV, V107, P4273, DOI 10.1021/cr050195z@@@Frey M, 2002, CHEMBIOCHEM, V3, P153, DOI@@@10.1002/1439-7633(20020301)3:2/3<153::AID-CBIC153>3.0.CO;2-B@@@Gao WM, 2006, INORG CHEM, V45, P9169, DOI 10.1021/ic061258e@@@Gimbert-Surinach C, 2012, ORGANOMETALLICS, V31, P3480, DOI@@@10.1021/om201126w@@@Ginovska-Pangovska B, 2014, BBA-BIOENERGETICS, V1837, P131, DOI@@@10.1016/j.bbabio.2013.08.004@@@Gloaguen F, 2009, CHEM SOC REV, V38, P100, DOI 10.1039/b801796b@@@Harb MK, 2009, ORGANOMETALLICS, V28, P6666, DOI 10.1021/om900675q@@@Harb MK, 2009, EUR J INORG CHEM, P3414, DOI 10.1002/ejic.200900252@@@Harb MK, 2009, ORGANOMETALLICS, V28, P1039, DOI 10.1021/om800748p@@@Justice AK, 2007, ANGEW CHEM INT EDIT, V46, P6152, DOI@@@10.1002/anie.200702224@@@Justice AK, 2007, INORG CHEM, V46, P1655, DOI 10.1021/ic0618706@@@Knorzer P, 2012, J BIOL CHEM, V287, P1489, DOI 10.1074/jbc.M111.305797@@@Kubas GJ, 2007, CHEM REV, V107, P4152, DOI 10.1021/cr050197j@@@Li P, 2009, DALTON T, P1919, DOI 10.1039/b814336f@@@Liu TB, 2007, J AM CHEM SOC, V129, P7008, DOI 10.1021/ja071851a@@@Lubitz W, 2007, CHEM REV, V107, P4331, DOI 10.1021/cr050186q@@@Lubitz W, 2014, CHEM REV, V114, P4081, DOI 10.1021/cr4005814@@@Lyon EJ, 1999, ANGEW CHEM INT EDIT, V38, P3178, DOI@@@10.1002/(SICI)1521-3773(19991102)38:21<3178::AID-ANIE3178>3.0.CO;2-4@@@McGlynn SE, 2009, DALTON T, P4274, DOI 10.1039/b821432h@@@Morvan D, 2007, ORGANOMETALLICS, V26, P2042, DOI 10.1021/om061173l@@@Mulder DW, 2013, J AM CHEM SOC, V135, P6921, DOI 10.1021/ja4000257@@@Munery S, 2013, CHEM-EUR J, V19, P15458, DOI 10.1002/chem.201303316@@@Nicolet Y, 1999, STRUCT FOLD DES, V7, P13, DOI@@@10.1016/S0969-2126(99)80005-7@@@Pandey AS, 2008, J AM CHEM SOC, V130, P4533, DOI 10.1021/ja711187e@@@Peters JW, 1998, SCIENCE, V282, P1853, DOI 10.1126/science.282.5395.1853@@@Rauchfuss TB, 2015, ACCOUNTS CHEM RES, V48, P2107, DOI@@@10.1021/acs.accounts.5b00177@@@Schilter D, 2016, Chem. Rev@@@Schmidt M, 1999, J AM CHEM SOC, V121, P9736, DOI 10.1021/ja9924187@@@Schwartz L, 2006, CHEM COMMUN, P520, DOI 10.1039/b514280f@@@Siegbahn PEM, 2007, CHEM REV, V107, P4414, DOI 10.1021/cr050185y@@@Silakov A, 2009, BIOCHEMISTRY-US, V48, P7780, DOI 10.1021/bi9009105@@@Simmons TR, 2014, COORDIN CHEM REV, V270, P127, DOI@@@10.1016/j.ccr.2013.12.018@@@Song LC, 2005, ORGANOMETALLICS, V24, P6126, DOI 10.1021/om0507373@@@Song LC, 2005, ACCOUNTS CHEM RES, V38, P21, DOI 10.1021/ar030004j@@@Song LC, 2010, ORGANOMETALLICS, V29, P610, DOI 10.1021/om9009526@@@TARD C, 2009, J CHEM REV, V109, P2245, DOI DOI 10.1021/CR800542Q@@@Tschierlei S, 2011, ENERG ENVIRON SCI, V4, P2340, DOI 10.1039/c0ee00708k@@@Tye JW, 2005, INORG CHEM, V44, P5550, DOI 10.1021/ic050402d@@@Tye JW, 2006, INORG CHEM, V45, P1552, DOI 10.1021/ic051231f@@@van Loevezijn A, 2011, J. Med. Chem, V54, P7030@@@Volkers P, 2007, Inorg. Biochem, V101, P1748@@@Wang H.-Y., 2012, ACS CATAL, P407@@@Wang M, 2010, CHEMSUSCHEM, V3, P551, DOI 10.1002/cssc.201000062@@@Wang N, 2008, CHEM COMMUN, P5800, DOI 10.1039/b811352a@@@Wang N, 2013, J AM CHEM SOC, V135, P13688, DOI 10.1021/ja408376t@@@Wang N, 2013, DALTON T, V42, P12059, DOI 10.1039/c3dt51371h@@@Wang WG, 2013, CHEM-EUR J, V19, P15476, DOI 10.1002/chem.201303351@@@Wu LZ, 2014, ACCOUNTS CHEM RES, V47, P2177, DOI 10.1021/ar500140r@@@Zaffaroni R, 2013, ORGANOMETALLICS, V32, P232, DOI 10.1021/om300997s@@@Zhao X, 2001, J AM CHEM SOC, V123, P9710, DOI 10.1021/ja0167046@@@2012, 化学学报, V70, P2306 [open_type] => gold_or_bronze [publication_29] => ACTA CHIM SINICA [end_page] => 98 [abstract_en] => Heating the toluene solution of 4,4-dimethyl-4,5-dihydro-3H-pyrazole (N2C5H10) and Fe-3(CO)(12) at reflux for 1 h produces diiron hexacarbonyls Fe-2(N2C5H10)(CO)(6) (1, vco(CH2Cl2): 2069, 2022, 1986 cm(-1)). Compound 1 exhibits 34 e(-) configuration, in which (N2C5H10)(2-) coordinates to diiron ((FeFeI)-Fe-I) centers featuring a butterfly structure. To a solution of 1 in toluene was added one equiv. of decarbonyl agent Me3NO in MeCN, and the mixture was stirred at room temperature for 20 min. Then, one equiv. of monophosphine was added. After 3 h, the solvent was removed and the residue was extracted into 5 mL CH2Cl2. The product Fe-2(N2C5H10)(CO)(5)(PR3) (PR3=PPh3, 2a; PCy3, 2b) was obtained as brown crystals by allowing a pentane layer to diffuse into the CH2Cl2 solution at -20 degrees C. P-31 NMR spectra exhibit a singlet at 6 67 for 2a and 8 70 for 2b in CH2Cl2, respectively. In IR spectra, the vco bands for 2a were displayed at 2032, 1968, 1952, 1907 cm 1, which are compared to 2024, 1959, 1937, 1893 cm(-1) for 2b. Photolysis the toluene solution of 1 in the presence of chelating diphosphine ligands such as dppe [dppe=1,2-C2H4(PPh2)(2)] and dppbz [dppbz=1,2-C6H4(PPh2)(2)] affords diiron diphosphine carbonyl compounds. For dppe, the product was Fe-2(N2C5H10)(Co)(4)(mu-dppe) (3a, P-31 NMR (CD2Cl2): a 95, FT-IR (CH2Cl2, vco): 1984, 1940, 1925 and 1900 cm(-1)), in which dppe is bridging the two iron centers. For more rigid diphosphine ligand dppbz, X-ray crystallographic analysis reveals the structure of Fe-2(N2C5H10)(mu-CO)(CO)(4)(dPPbz) [3b, P-31 NMR (CD2C12): delta 93]. In 3b, (N2C5H10)(2-) coordinates to diiron centers in a planar mode, and dppbz chelates at one Fe site by the replacement of one CO ligand. Compound 3b features a Fe-CO-Fe rotated structure with a bridging CO ligand between the two Fe centers. The vco bands for 3b were displayed at 1990, 1947, 1919, 1895 cm-1. With such a rotated structure, compound 3b provides a new approach for synthetic models of H-red state of [FeFe]-H(2)ase. The CCDC number for 1, 2a, 2b, 3a and 3b are 1494954, 1494955, 1494956, 1494966 and 1494957. All the compounds were well characterized by NMR, IR spectroscopy and elemental analysis. [author_in] => [Li, R] Department of Chemistry & Chemical Engineering, Shandong University, Jinan, 250100, China@@@[ Xu, W] Department of Chemistry & Chemical Engineering, Shandong University, Jinan, 250100, China@@@[ Zhao, J] Department of Chemistry & Chemical Engineering, Shandong University, Jinan, 250100, China@@@[ Yu, X] Department of Chemistry & Chemical Engineering, Shandong University, Jinan, 250100, China@@@[ Wang, W] Department of Chemistry & Chemical Engineering, Shandong University, Jinan, 250100, China@@@[ Tung, C.-H] Department of Chemistry & Chemical Engineering, Shandong University, Jinan, 250100, China [publication_type] => J [begin_page] => 92 [author_en] => Li, R; Xu, WY; Zhao, JQ; Yu, X; Wang, WG; Tung, CH [volume] => 75 [get_data] => 2018-08-29 [publisher] => SCIENCE PRESS [keyword_en] => [FeFe] hydrogenase; diiron carbonyls; phosphine ligands; rotated; structure; bridging CO ligand [format_publication_cn] => 6918be3b26b1fa6ec0424f6071208a75331227575 [keyword_plu] => HYDROGENASE ACTIVE-SITE; FE-ONLY HYDROGENASE; HETEROCYCLIC CARBENE LIGANDS; 2ND COORDINATION SPHERE; IRON HYDROGENASE; PROTON REDUCTION; H-2 ACTIVATION; CHLAMYDOMONAS-REINHARDTII; CLOSTRIDIUM-PASTEURIANUM; DITHIOLATE MODEL [doi] => 10.6023/A16070364 [publication_iso] => Acta Chim. Sin. [fund_ab] => Project supported by the National Natural Science Foundation of China; (Nos. 21402107, 91427303), the financial support from the \"1000 Youth; Talents Plan\" and National Undergraduate Training Programs for; Innovation and Entrepreneurship (No. 201510422032). [format_title_en] => d0113df9bd741381705501e4a66795aa-1519900981 [publisher_city] => BEIJING [hx_id] => 2377,2378,2371 [reference_No] => 68 [email] => wwg@sdu.edu.cn [cite_awos] => 0 [wos_No] => WOS:000395965800013 [wos_sub] => Chemistry, Multidisciplinary [research_area] => Chemistry [check_180] => 0 [publisher_ad] => 16 DONGHUANGCHENGGEN NORTH ST, BEIJING 100717, PEOPLES R CHINA [title_en] => Azo-bridged New Diiron Carbonyl Complex: Synthesis of Fe-2(NR)(2)(C0)(6-x)(PR3)(x) and the Derivatives [format_publication_en] => 169b60c7845c9e5f36906950b18f11111348184734 [jl_language] => chinese [jl_publication_cn] => 化学学报 [jl_article_dt] => 期刊论文 [jl_publication_en] => actachimicasinica [jl_country] => 中国,中国 [jl_keyword_en] => fefehydrogenase,rotated,diironcarbonyls,phosphineligands,bridgingcoligand,structure [jl_keyword_cn] => fefe氢化酶,双铁羰基配合物,桥联co配体,旋转构型,膦配体 [jl_clc] => r472 [jl_publisher] => sciencepress [author_id] => 24226 [author_test] => Array ( [0] => Array ( [sure] => 1 [irmagnum] => 0 [u_index] => 5 [name] => 王文光 [sys_author_id] => Array ( [0] => 24226 ) [irtag] => 0 [t_index] => 0 [person_id] => 24226 ) ) [company_id] => 0,43,169 [sys_subject_sort] => 0,0 [college_parent_id] => 43,169 [company_test] => Array,Array [sys_author_id_arr] => 24226王文光 [cscd_No] => CSCD:5919136 [jl_publication_cn_publication_en] => actachimicasinica,化学学报 [jl_keyword_cn_keyword_en] => fefehydrogenase,旋转构型,桥联co配体,rotated,膦配体,双铁羰基配合物,diironcarbonyls,phosphineligands,bridgingcoligand,fefe氢化酶,structure [sys_author_id] => 24226 [format_cscd_No] => 9a4a3ae032f3a92cc146d041d5e6ba861488251373 [format_title_en_publication_en_pub_year] => 1b90d2a1a3f2830771a084f2c003db1b-383640153 [format_wos_No] => 01559ec776d30793dde7683293b4f211225968735 [format_title_en_issn_pub_year] => f0efbddf3193a4e00796796c71bc6c76-457414792 [format_scopus_No] => c3d48bcb32bfc5c344086a2baaaded771827680366 [standard_in] => Department of Chemistry & Chemical Engineering, Shandong University, Jinan, 250100, China [cauthor] => Wang, W(wwg@sdu.edu.cn) [datebase] => Scopus [sys_priority_field] => 76 [scopus_No] => 2-s2.0-85015214284 [id] => 7w5JvmUBFjIhTVEbM6Ue [tags] => 0 ) [17] => Array ( [issn] => 0567-7351 [delivery_No] => L8459 [batch2] => 1,2 [hb_batch] => 3241 [tag] => 0 [author_en] => ZHANG, WX; FAN, YP; DU, GY [publication_type] => J [publisher_city] => SHANGHAI [article_id] => 187247,336787,582035 [get_data] => 2018-08-29 [format_title_en_publication_en_pub_year] => 80b64c9919e00d3dd039e3fd553fb7e9643302331 [pages] => 4 [cite_wos] => 0 [publication_iso] => Acta Chim. Sin. [cite_awos] => 0 [from_id] => 80,73,78 [cauthor_ad] => [ZHANG, WX]SHANDONG UNIV,DEPT CHEM,JINAN,PEOPLES R CHINA. [hx_id] => 2371 [cauthor_order] => 1 [research_area] => Chemistry [sys_level_num] => 1_7 [publisher] => ACTA CHIMICA SINICA [sys_jg_type] => 0,5 [format_issn_issue_page_pub_year] => eb33fc7f82263174cf2dfed3630429a9-1529354835 [title_en] => THE MOLECULAR AND CRYSTAL-STRUCTURE OF [MN(H2O)4(NCS)2](18-CROWN-6) [publication_29] => ACTA CHIM SINICA [author_fn] => ZHANG, WX; FAN, YP; DU, GY [pub_year] => 1987 [publisher_ad] => SHANGHAI INST ORGANIC CHEM ACADEMIA SINICA 345 LINGLING LU, SHANGHAI,; PEOPLES R CHINA [check_180] => 0 [end_page] => 1146 [cauthor_back] => ZHANG, WX [begin_page] => 1143 [format_wos_No] => c2c8f5bcd449111b557ef67e215d3635796025959 [hints] => 15 [volume] => 45 [language] => Chinese [source_type] => 351 [issue] => 12 [reference_No] => 0 [batch] => 3250,3241,3252 [publication_en] => ACTA CHIMICA SINICA [school_id] => 117 [sys_update_time] => 2018-09-05 15:29:33 [format_title_en_issn_pub_year] => 8a11a668a1f03bb515e6d363caa2ab4c-511139080 [check_3Y] => 0 [wos_sub] => Chemistry, Multidisciplinary [SYS_TAG] => 3 [wos_No] => WOS:A1987L845900001 [page] => 1143-1146 [hb_type] => 2 [article_dt] => Article [jl_language] => chinese [jl_publication_en] => actachimicasinica [jl_article_dt] => 期刊论文 [jl_publisher] => actachimicasinica [author_jg] => [张文兴;樊悦朋;杜高英]山东大学化学系,山东大学化学系,山东大学化学系 济南,济南,济南 [keyword_cn] => 水分子;八面体;多面体;结晶构造;固体结构;晶体结构;H_2O;配位;Mn;NCS; [format_title] => 940f6ee88d7441d5cbe48dd4b774423c-1072091686 [title_cn] => [Mn(H_2O)_4(NCS)_2](18-冠-6)的分子和晶体结构 [format_publication_cn] => 6918be3b26b1fa6ec0424f6071208a75331227575 [publication_cn] => 化学学报 [format_title_en] => e298dd5b7fbc62c2f4a7ea4849380b96-234782038 [sys_priority_field] => 73 [author_cn] => 张文兴;樊悦朋;杜高英; [format_publication_en] => 169b60c7845c9e5f36906950b18f11111348184734 [CSSN] => 31-1320/O6 [abstract_cn] => [Mn(H_2O)_4(NCS)_2](18-冠-6)的晶体属于正交晶系,空间群为D_(2h)~(16)-Pnma.晶胞参数:α=9.172(1)A,b=13.457(3)A,c=19.303(4)A,z=4.结构用重原子法解出,经最小二乘法修正,最终的R=0.031.锰(Ⅱ)与两个硫氰酸根,四个水分子配合形成顺式八面体的配位分子,并通过其中的水分子与18-冠-6以氢键结合,形成题目所列的分子和晶体. [uri] => http://kns.cnki.net/kns/detail/detail.aspx?FileName=HXXB198712000&DbName=CJFQ1987 [jl_publication_cn] => 化学学报 [jl_keyword_cn] => ,ncs,多面体,mn,水分子,配位,h2o,晶体结构,八面体,结晶构造,固体结构 [author_in] => [company_id] => 43,169 [sys_subject_sort] => 0,0 [college_parent_id] => 43,169 [company_test] => Array,Array [author_id] => [author_test] => Array ( ) [sys_author_id_arr] => [jl_publication_cn_publication_en] => actachimicasinica,化学学报 [sys_author_id] => [format_title_cn_publication_cn_pub_year] => 31495f298ad60b14cf2a65233f8647771799797649 [format_title_cn_issn_pub_year] => fa5b360a5251fa8dd3f0be3ff87d98a9-1812380470 [id] => YgievWUBFjIhTVEb0szU [tags] => 0 ) [18] => Array ( [issn] => 0567-7351 [delivery_No] => PT675 [batch2] => 1,2 [hb_batch] => 3241 [tag] => 0 [author_en] => CUI, XG; LI, XY [abstract_en] => The thermal decomposition of the complex of Cu(II) with N-(2-hydroxyethyl) Salicyldimino and its kinetics were studied under the non-isothermal condition by TG and DTG techniques. The non-isothermal kinetic data were analyzed by means of Achar method and Coats -Redfern method. The possible reaction mechanism was suggested by comparing the kinetic parameters. The results show that this thermal decomposition is three-dimension diffusion, 3D(cylinder symmetry). The kinetic equation can be expressed as:; dalpha/dt = A . e(-E/RT).3/2[(1-alpha)-1/3 - 1]-1 [publication_type] => J [publisher_city] => SHANGHAI [article_id] => 113597,155174,539386,335880 [get_data] => 2018-08-29 [format_title_en_publication_en_pub_year] => a01258deb5589a020086114c3a2059cc740910978 [pages] => 5 [cite_wos] => 0 [check_3Y] => 0 [cite_awos] => 0 [from_id] => 80,85,73,78 [cauthor_ad] => [CUI, XG]SHANDONG UNIV,DEPT CHEM,JINAN 250100,PEOPLES R CHINA. [school_id] => 117 [cauthor_order] => 1 [research_area] => Chemistry [sys_level_num] => 1_7 [publisher] => ACTA CHIMICA SINICA [sys_jg_type] => 0,5 [format_issn_issue_page_pub_year] => 54503b301abfd9b956bd7b4ede53b7f0-1786095428 [title_en] => STUDIES ON THE NONISOTHERMAL KINETICS OF THERMAL-DECOMPOSITION OF THE COMPLEX OF CU(II) WITH N-(2-HYDROXYETHYL) SALICYLDIMINO [publication_29] => ACTA CHIM SINICA [author_fn] => CUI, XG; LI, XY [pub_year] => 1994 [publisher_ad] => SHANGHAI INST ORGANIC CHEM ACADEMIA SINICA 345 LINGLING LU, SHANGHAI,; PEOPLES R CHINA [check_180] => 0 [end_page] => 1011 [cauthor_back] => CUI, XG [begin_page] => 1007 [format_wos_No] => 89b00b79ddc3ba1b0852fefd3a16be38174811560 [hints] => 13 [volume] => 52 [language] => Chinese [source_type] => 351 [issue] => 10 [reference_No] => 6 [batch] => 3250,3241,3254,3252 [publication_en] => ACTA CHIMICA SINICA [hx_id] => 2371 [sys_update_time] => 2018-09-05 15:29:32 [format_title_en_issn_pub_year] => ce63baed48534efb930f66a397335808-1210756820 [publication_iso] => Acta Chim. Sin. [wos_sub] => Chemistry, Multidisciplinary [SYS_TAG] => 3 [wos_No] => WOS:A1994PT67500012 [page] => 1007-1011 [hb_type] => 2 [article_dt] => Article [jl_language] => chinese [jl_publication_en] => actachimicasinica [jl_article_dt] => 期刊论文 [jl_publisher] => actachimicasinica [author_jg] => []济南250100,中国.@@@[]山东大学化学系 济南250100,中国.@@@[]山东大学化学系,中国 [keyword_cn] => 铜;水构醛亚胺;配合物;动力学; [format_title] => 9cf7e513f607d8574ffd92965f9153ba-834589131 [clc] => O641.4 [title_cn] => 铜(Ⅱ)与N—(2—羟基乙基)水杨醛亚胺配合物热分解非等温动力学的研究 [format_publication_cn] => 6918be3b26b1fa6ec0424f6071208a75331227575 [publication_cn] => 化学学报 [format_title_en] => a2e68e97789019a10427daaf8435423d1130408188 [CSSN] => 31-1320/O6 [abstract_cn] => 本文利用TG,DTG技术研究了铜(Ⅱ)与N-(2-羟基乙基)水杨醛亚胺配合物的热分解过程,借助TG,DTG曲线,采用Achar法和Coats-Redfern法,通过对比不同机理时的动力学参数,推断出第一,三两步热分解反应的可能机理,求出了该配合物热分解的非等温动力学数据,其机理为三维扩散,3D(圆柱形对称),动力学方程:da/dt=a.e^-3/RT.3/2[1-a)^1/3-1]^-1 [sys_priority_field] => 73 [author_cn] => 崔学桂;李晓燕 [uri] => http://lib.cqvip.com/qk/91047X/199410/1384890.html [format_publication_en] => 169b60c7845c9e5f36906950b18f11111348184734 [jl_publication_cn] => 化学学报 [jl_keyword_cn] => 热分解,铜配合物,非等温动力学 [jl_clc] => o6414 [author_in] => [company_id] => 43,169 [sys_subject_sort] => 0,0 [college_parent_id] => 43,169 [company_test] => Array,Array [author_id] => 21933 [author_test] => Array ( [0] => Array ( [sure] => 0 [irmagnum] => 0 [u_index] => 2 [name] => 李晓燕 [irtag] => 7 [t_index] => 0 [person_id] => 21933 ) ) [sys_author_id_arr] => [jl_publication_cn_publication_en] => actachimicasinica,化学学报 [jl_keyword_cn_keyword_en] => 非等温动力学,热分解,铜配合物 [sys_author_id] => [format_title_cn_publication_cn_pub_year] => 00c5f17b496d6dc42c4c7f187e5c6481-3444927 [format_title_cn_issn_pub_year] => e20637991332bcc64164afbc19371398-771112057 [id] => dwifvWUBFjIhTVEbH9iI [tags] => 0 ) [19] => Array ( [batch2] => 1,2,6 [tag] => 0 [keyword_cn] => 十二烷基磺酸钠;溶致液晶;小角X衍射;ESR;相结构 [article_id] => 334860,167947,498449,214380 [clc] => O753.2 [author_jg] => 山东大学胶体与界面化学研究所 [format_title_cn_publication_cn_pub_year] => 203e231abd0d1c7c99de48c75385f068-405505529 [from_id] => 76,80,73 [issue] => 3 [sys_level_num] => 2_2 [sys_jg_type] => 9,3,5 [format_issn_issue_page_pub_year] => 3e200e742710151d5760691451760808-1187968082 [source_type] => 351 [pub_year] => 1997 [pub_date] => 2016-12-01 [pages] => 7 [hints] => 15 [author_cn] => 李方;李干佐 [language] => Chinese [issn] => 0567-7351 [batch] => 3243,3252,3241 [publication_cn] => 化学学报 [title_cn] => 2―小角X衍射和ESR方法研究十二烷基磺酸钠/正戊醇/水三元体系的相结构 [SYS_TAG] => 3 [format_title_cn_issn_pub_year] => 32205b836fe3f3d50ad7b9b16f2b2970-1124489342 [page] => 229-235 [hb_type] => 2 [article_dt] => Article [hb_batch] => issn_issue_page_pub_year_2_3 [publication_en] => ACTA CHIMICA SINICA [cite_wos] => 0 [check_3Y] => 1 [delivery_No] => WT408 [format_title] => 866d73bbb009f6cf10c469c683bb382d-2094253679 [cauthor_ad] => [Li, F]SHANDONG UNIV,INST COLLOID & INTERFACE SCI,JINAN 250100,PEOPLES R CHINA. [author_fn] => Li, F; Li, GZ; Yang, B; Wang, HQ [publication_29] => ACTA CHIM SINICA [end_page] => 235 [abstract_en] => The isothermal phase diagram for the system of sodium dodecyl sulfonate (As)/n-C5H11OH/H2O has been determined at 30 degrees C. With small angle X-ray diffraction, we investigated the liquid crystal area in the phase diagram. The results showed that all the liquid crystal is lamellar at certain temperature. Layer distance of liquid crystal increases with the increasing of water content and decreases with the increasing of n-C5H11OH content. The water permeability value not only depends on the water content, but also is affected by the alcohol content. The ESR studies showed that the structure parameter of the probe in the liquid crystal region is 0.32 +/- 0.02. The anisotropic degree of the probe rotating motion in the W/O and O/W micelle region increases with the increasing of water and oil content, respectively. [author_in] => [Li, F] Institute of Colloid and Interface Chemistry, Shandong University, Jinan, 250100, China@@@[ Li, G.-Z] Institute of Colloid and Interface Chemistry, Shandong University, Jinan, 250100, China@@@[ Yang, B] Institute of Colloid and Interface Chemistry, Shandong University, Jinan, 250100, China@@@[ Wang, H.-Q] Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China [begin_page] => 229 [publication_type] => J [author_en] => Li, F; Li, GZ; Yang, B; Wang, HQ [volume] => 55 [get_data] => 2018-08-29 [publisher] => ACTA CHIMICA SINICA [format_publication_cn] => 6918be3b26b1fa6ec0424f6071208a75331227575 [keyword_plu] => SPIN [publication_iso] => Acta Chim. Sin. [format_title_en] => a357efbf779d5b782a2dbfeeb90e20f3-1077320219 [publisher_city] => SHANGHAI [hx_id] => 2378,2371 [reference_No] => 8 [cite_awos] => 0 [wos_No] => WOS:A1997WT40800004 [sys_priority_field] => 76 [wos_sub] => Chemistry, Multidisciplinary [research_area] => Chemistry [check_180] => 1 [publisher_ad] => SHANGHAI INST ORGANIC CHEM ACADEMIA SINICA 345 LINGLING LU, SHANGHAI,; PEOPLES R CHINA [title_en] => Studies on the phase structure of As/n-C5H11OH/H2O systems with small angle X-ray diffraction and ESR methods [format_publication_en] => 169b60c7845c9e5f36906950b18f11111348184734 [jl_language] => chinese [jl_publication_cn] => 化学学报 [jl_article_dt] => 期刊论文 [jl_publication_en] => actachimicasinica [jl_country] => 中国,中国 [jl_keyword_cn] => 小角x衍射,溶致液晶,相结构,esr,十二烷基磺酸钠 [jl_clc] => o7532 [jl_publisher] => actachimicasinica [company_id] => [author_id] => [author_test] => Array ( ) [sys_author_id_arr] => [jl_publication_cn_publication_en] => actachimicasinica,化学学报 [jl_keyword_cn_keyword_en] => 十二烷基磺酸钠,溶致液晶,esr,相结构,小角x衍射 [sys_author_id] => [format_title_en_publication_en_pub_year] => f0913b9509eb0a92bbf45a6c77f4842b-1248300815 [format_wos_No] => f7d17a893299eb765d49e96bc7df5160-1171150199 [format_title_en_issn_pub_year] => 0845c219dc7d5f064a6585a12a8834c5-253778151 [datebase] => Scopus [format_scopus_No] => a4b4026934124ea00b40925409c462fa-693570831 [uri] => https://www.scopus.com/inward/record.uri?eid=2-s2.0-33748609078&partnerID=40&md5=45fdcb0caed35b9cdb490784881e0691 [standard_in] => Institute of Colloid and Interface Chemistry, Shandong University, Jinan, 250100, China; Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China [scopus_No] => 2-s2.0-33748609078 [id] => Ugw6vmUBFjIhTVEb-1ZB [tags] => 0 ) ) 1-->
301. 铜(Ⅱ)氮氧自由基配合物铁磁耦合机理的理论研究 CSCD SCIE

作者:孙友敏[1];刘成卜[1];王若曦[1]

作者机构:[孙友敏] 山东大学理论化学研究所, 济南, 山东 250100, 中国.;[刘成卜] 山东大学理论化学研究所, 济南, 山东 250100, 中国.;[王若曦] 山东大学理论化学研究所, 济南, 山东 250100, 中国

来源:化学学报,ACTA CHIMICA SINICA,2004,Vol.62,Issue.23

资源类型:期刊论文

WOS:000225800600004

302. 硅甲基硼烯异构化反应机理研究 SCIE

作者:孙华斌;刘成卜;丁世良;邓从豪

作者机构:[孙华斌;刘成卜;丁世良;邓从豪]中国人民解放军济南军区后勤部军事医学研究所;[孙华斌;刘成卜;丁世良;邓从豪]山东大学化学院理论化学研究室;[孙华斌;刘成卜;丁世良;邓从豪]山东大学化学院理论化学研究室;[孙华斌;刘成卜;丁世良;邓从豪]山东大学化学院理论化学研究室 济南250014;[孙华斌;刘成卜;丁世良;邓从豪]济南250100;[孙华斌;刘成卜;丁世良;邓从豪]济南250100;[孙华斌;刘成卜;丁世良;邓从豪]济南250100

来源:化学学报,ACTA CHIMICA SINICA,1994,Vol.52,Issue.8,740-744

资源类型:期刊论文

WOS:A1994PK37600003

303. 硅橡胶硫化反应场的数值模拟 CSCD SCOPUS SCIE

作者:贾玉玺;孙胜;季忠;赵国群

作者机构:[贾玉玺;孙胜;季忠;赵国群]山东大学材料科学与工程学院;[贾玉玺;孙胜;季忠;赵国群]山东大学材料科学与工程学院;[贾玉玺;孙胜;季忠;赵国群]山东大学材料科学与工程学院;[贾玉玺;孙胜;季忠;赵国群]山东大学材料科学与工程学院 济南250061;[贾玉玺;孙胜;季忠;赵国群]济南250061;[贾玉玺;孙胜;季忠;赵国群]济南250061;[贾玉玺;孙胜;季忠;赵国群]济南250061

来源:化学学报,ACTA CHIMICA SINICA,2002,Vol.60,Issue.8,1368-1373+1347

资源类型:期刊论文

WOS:000177641800003

304. ET类分子导体3d轨道对晶体能带及导电性的影响 CSCD SCOPUS SCIE

作者:刘国群,雷虹,方奇

作者机构:[刘国群] 山东大学, 晶体材料国家重点实验室, 济南, 山东 250100, 中国.;[方奇] 山东大学, 晶体材料国家重点实验室, 济南, 山东 250100, 中国.;[雷虹] 山东大学信息科学与工程学院, 济南, 山东 250100, 中国

来源:化学学报,ACTA CHIMICA SINICA,2004,Vol.62,Issue.1,10-15

资源类型:期刊论文

WOS:000187998100003

305. DODMAC/n-C_(10)H_(21)OH/10% n-C_(10)H_(22)/H_2O体系溶致液晶的~2H NMR和SAXS研究 SCIE

作者:郝京诚,李干佐,汪汉卿,刘维民

作者机构:[郝京诚,李干佐,汪汉卿,刘维民]山东师范大学化学系,山东大学化学系,中国科学院兰州化学物理研究所固体润滑开放实验室,中国科学院兰州化学物理研究所固体润滑开放实验室 济南250014,济南250100,兰州730000,兰州730000

来源:化学学报,ACTA CHIMICA SINICA,1997,Vol.55,Issue.5,491-497

资源类型:期刊论文

WOS:A1997XD34000013

306. {[(K·TPPO·DB18C6)_2(C_4H_8O_2)](HGI_3)_2}·3C_4H_8O_2单晶的合成、性质和结构表征 SCIE

作者:蒋德华;刘学勇;孙大岩;沈静兰

作者机构:山东大学化学院;山东大学化学院 济南

来源:化学学报,ACTA CHIMICA SINICA,1996,Vol.54,Issue.9,874-881

资源类型:期刊论文

WOS:A1996VN41500008

307. 共线量子散射方法研究D+ClD体系 SCOPUS SCOPUS SCIE

作者:吴韬;沈长圣;居冠之;边文生

作者机构:南京大学化学系亚微观固态化学研究所;山东大学理论化学研究所

来源:化学学报,ACTA CHIMICA SINICA,2001,Vol.59,Issue.8,1272-1276

JCR分区(WOS):Q3

最新影响因子:2.131

当年影响因子:0.53

资源类型:期刊论文

WOS:000170513100019

308. 汞(Ⅱ)-甲基百里酚蓝-Ⅹ(SCN~-,Br~-,I~-) 三元混合配位化合物稳定常数的测定 SCIE

作者:邹时复;姜庆利;

作者机构:[邹时复;姜庆利]山东大学化学系,山东大学化学系 济南,济南

来源:化学学报,ACTA CHIMICA SINICA,1983,Vol.41,Issue.3,242-247

资源类型:期刊论文

WOS:A1983QN35600008

309. 三维H+H2(v,j)→H2(v‘,j’)+H反应中复合态生成及产物转动态分布的 … SCIE

作者:吕文彩;蔡政亭

作者机构:[吕文彩;蔡政亭]山东大学理论化学研究室,中国

来源:化学学报,ACTA CHIMICA SINICA,1999,Vol.57,Issue.6,553-556

资源类型:期刊论文

WOS:000081113700003

310. 环丙基硅烯的理论研究 环丙基硅烯C_3H_5SiH的重排反应及其机理 SCOPUS SCIE

作者:冯圣玉,冯大诚,邓从豪

作者机构:[冯圣玉,冯大诚,邓从豪]山东大学理论化学研究室,山东大学理论化学研究室,山东大学理论化学研究室 济南250100 山东大学新材料研究所,济南250100,济南250100

来源:化学学报,ACTA CHIMICA SINICA,1997,Vol.55,Issue.8,747-754

资源类型:期刊论文

WOS:A1997XW46900004

311. NH_3/NH_4Cl中钴(Ⅱ)-丁二肟体系在悬汞电极上电化学还原机理的研究 SCIE

作者:金文睿;刘坤;

作者机构:[金文睿;刘坤]山东大学化学系,山东大学化学系 济南,济南 青岛医学院化学教研室

来源:化学学报,ACTA CHIMICA SINICA,1986,Vol.44,Issue.7,750-752

资源类型:期刊论文

WOS:A1986D973400024

312. 伯胺N1923和三苯基氧化膦萃取金(Ⅲ)的动力学 Ⅰ.一元萃取剂体系萃取AuCl_4~- SCIE

作者:孙思修;高自立;沈静兰;柴金岭;

作者机构:[孙思修;高自立;沈静兰;柴金岭]山东大学化学系,山东大学化学系,山东大学化学系,山东师范大学化学系 济南 250100,济南 250100,济南 250100,济南 250014

来源:化学学报,ACTA CHIMICA SINICA,1992,Vol.50,Issue.10,989-994

资源类型:期刊论文

WOS:A1992KA50000010

313. 饱和开链醚的氧化碳氢炔基化研究 CSCD SCOPUS SCIE

作者:关弘浩; 陈磊; 刘磊

作者机构:[关弘浩]山东大学药学院, 济南, 山东 250012, 中国;[陈磊]山东大学化学与化工学院, 济南, 山东 250100, 中国;[刘磊]山东大学药学院;;山东大学化学与化工学院, ;;, 济南;;济南, ;; 250012;;250100.

来源:化学学报,ACTA CHIMICA SINICA,2018,Vol.76,Issue.6,440-444

资源类型:期刊论文

WOS:000442409600003

314. Mg-Al类水滑石/高岭土分散体系流变振荡现象研究 CSCD SCOPUS SCIE

作者:戴肖南;侯万国;赵超;

作者机构:[戴肖南] 山东轻工业学院化学工程学院, 济南, 山东 250100, 中国.;[赵超] 山东轻工业学院化学工程学院, 济南, 山东 250100, 中国.;[侯万国] 山东大学, 胶体与界面化学教育部重点实验室, 济南, 山东 250100, 中国

来源:化学学报,ACTA CHIMICA SINICA,2011,Vol.69,Issue.2,153-156

资源类型:期刊论文

WOS:000287907800007

315. 高分子膜错流纳滤的多场耦合有限元分析 CSCD SCOPUS SCIE

作者:王钊;贾玉玺;徐一涵;石彤非;安立佳;

作者机构:[王钊] 山东大学, 材料液固结构演变与加工教育部重点实验室, 济南, 山东 250061, 中国.;[贾玉玺] 山东大学, 材料液固结构演变与加工教育部重点实验室, 济南, 山东 250061, 中国.;[徐一涵] 山东大学, 材料液固结构演变与加工教育部重点实验室, 济南, 山东 250061, 中国.;[石彤非] 中国科学院长春应用化学研究所, 高分子物理与化学国家重点实验室, 长春, 吉林 130022, 中国.;[安立佳] 中国科学院长春应用化学研究所, 高分子物理与化学国家重点实验室, 长春, 吉林 130022, 中国

来源:化学学报,ACTA CHIMICA SINICA,2013,Vol.71,Issue.11,1511-1515

资源类型:期刊论文

WOS:000328574000008

316. 通过Heck偶联反应制备具有pH响应的吡啶基团功能化的多孔材料 CSCD SCOPUS SCIE

作者:杨文艳;刘鸿志;

作者机构:[杨文艳] 山东大学化学与化工学院, 特种功能聚集体材料教育部重点实验室, 济南, 山东 250100, 中国.;[刘鸿志] 山东大学化学与化工学院, 特种功能聚集体材料教育部重点实验室;;特种功能高分子材料及相关技术教育部重点实验室, 济南, 山东 250100, 中国

来源:化学学报,ACTA CHIMICA SINICA,2015,Vol.73,Issue.6,623-628

资源类型:期刊论文

WOS:000359098200014

317. 基于偶氮桥连的新型双铁羰基配合物:Fe_2(N_2C_5H_(10))(CO)_(6-x)(PR_3)_x的合成及衍生 CSCD SCOPUS SCIE

作者:李冉;徐文元;赵巾钦;余鑫;王文光;佟振合;

作者机构:[李冉] 山东大学化学与化工学院, 济南, 山东 250100, 中国.;[徐文元] 山东大学化学与化工学院, 济南, 山东 250100, 中国.;[赵巾钦] 山东大学化学与化工学院, 济南, 山东 250100, 中国.;[余鑫] 山东大学化学与化工学院, 济南, 山东 250100, 中国.;[王文光] 山东大学化学与化工学院, 济南, 山东 250100, 中国.;[佟振合] 山东大学化学与化工学院, 济南, 山东 250100, 中国

来源:化学学报,ACTA CHIMICA SINICA,2017,Vol.75,Issue.1,92-98

资源类型:期刊论文

WOS:000395965800013

318. [Mn(H_2O)_4(NCS)_2](18-冠-6)的分子和晶体结构 SCIE

作者:张文兴;樊悦朋;杜高英;

作者机构:[张文兴;樊悦朋;杜高英]山东大学化学系,山东大学化学系,山东大学化学系 济南,济南,济南

来源:化学学报,ACTA CHIMICA SINICA,1987,Vol.45,Issue.12,1143-1146

资源类型:期刊论文

WOS:A1987L845900001

319. 铜(Ⅱ)与N—(2—羟基乙基)水杨醛亚胺配合物热分解非等温动力学的研究 SCIE

作者:崔学桂;李晓燕

作者机构:[]济南250100,中国.;[]山东大学化学系 济南250100,中国.;[]山东大学化学系,中国

来源:化学学报,ACTA CHIMICA SINICA,1994,Vol.52,Issue.10,1007-1011

资源类型:期刊论文

WOS:A1994PT67500012

320. 2―小角X衍射和ESR方法研究十二烷基磺酸钠/正戊醇/水三元体系的相结构 SCOPUS SCIE

作者:李方;李干佐

作者机构:山东大学胶体与界面化学研究所

来源:化学学报,ACTA CHIMICA SINICA,1997,Vol.55,Issue.3,229-235

资源类型:期刊论文

WOS:A1997WT40800004

共 17 页, 325 条记录

TOP